[1]顾亦然,王兵,孟繁荣. 一种基于K-Shell的复杂网络重要节点发现算法[J].计算机技术与发展,2015,25(09):70-74.
 GU Yi-ran,WANG Bing,MENG Fan-rong. An Algorithm of Important Nodes Finding for Complex Network Based on K-Shell[J].,2015,25(09):70-74.
点击复制

 一种基于K-Shell的复杂网络重要节点发现算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年09期
页码:
70-74
栏目:
智能、算法、系统工程
出版日期:
2015-09-10

文章信息/Info

Title:
 An Algorithm of Important Nodes Finding for Complex Network Based on K-Shell
文章编号:
1673-629X(2015)09-0070-05
作者:
 顾亦然王兵孟繁荣
 南京邮电大学 自动化学院
Author(s):
 GU Yi-ranWANG BingMENG Fan-rong
关键词:
 重要节点K -Shell重要度贡献影响度
Keywords:
 important nodeK -Shellimportant contributionsaffect
分类号:
TP301
文献标志码:
A
摘要:
 复杂网络中的重要节点通常数量较少,但是对网络的影响却很大。为了能够有效地发现网络拓扑结构中的重要节点,文中基于K -Shell算法,在考虑节点自身重要度的基础上,考虑了邻居节点对自身节点的重要度贡献,提出KSA( K-Shell-Affect)算法。该算法引入影响度概念,用节点自身的K -Shell值和与对其邻居节点的影响度来表征其对邻居节点的重要度贡献。对具有明显社团结构的Zachary网络进行仿真表明,该算法可行有效,克服了K - Shell划分结果的粗粒化,能够正确找到网络中的重要节点,具有一定的合理性,尤其在具有社团结构的网络中,能够十分有效地找到社团内部的核心节点。
Abstract:
 There are only a few important nodes in the complex network,which have a great impact on the complex network. In order to discover the important nodes in the complex network effectively,propose a novel algorithm-KSA( K-Shell-Affect) based on K-Shell. The algorithm considers the property of node itself,as well as the important contributions of the adjacent nodes by introducing the concept of affect. The important contribution to the adjacent nodes is characterized by K-Shell and affect to the adjacent nodes. The simulation on the Zachary network,which has a significant community structure,shows that the algorithm is feasible,effective and reasonable,and over-comes the coarse result of the K-Shell . Especially for a network of community structure,can find the core node of the community struc-ture effectively.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(09):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(09):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(09):47.

更新日期/Last Update: 2015-10-16