[1]姬汉贵,成谢锋. 心音信号周期增量序列的多尺度化研究[J].计算机技术与发展,2015,25(09):48-52.
 JI Han-gui,CHENG Xie-feng. Research on Multiscale Analysis of Heart Sound Cycle Increment Series[J].,2015,25(09):48-52.
点击复制

 心音信号周期增量序列的多尺度化研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年09期
页码:
48-52
栏目:
智能、算法、系统工程
出版日期:
2015-09-10

文章信息/Info

Title:
 Research on Multiscale Analysis of Heart Sound Cycle Increment Series
文章编号:
1673-629X(2015)09-0048-05
作者:
 姬汉贵成谢锋
 南京邮电大学 电子科学与工程学院
Author(s):
 JI Han-guiCHENG Xie-feng
关键词:
 心音信号心力衰竭心音生理机制基本尺度熵
Keywords:
 heart sound signalCHFheart sound physiological mechanismbase-scale entropy
分类号:
TP301
文献标志码:
A
摘要:
 心音信号是一种复杂的生理信号,对心音信号产生机理的研究能够为心音听诊提供理论依据。文中从心血管循环系统的生理结构出发,讨论了心音的产生机理;然后,提出心音周期增量序列的多尺度化基本尺度熵和相关的评价指标;最后,利用本方法对健康人群和充血性心力衰竭患者进行分类分析。仿真实验表明,对心音周期增量序列进行多尺度化基本尺度熵分析,可以准确地区分健康人和心力衰竭人群。基于多尺度化基本尺度熵提出的诊断参数可以作为心衰早期诊断的一种依据。通过肩带式心音传感器首次实现了不用手持、长时间的心音采集,同时通过对长时间心音信号变化规律的研究,对于充分利用心音,挖掘听诊的潜力有着重要的意义。
Abstract:
 Heart sound signal is a kind of complex physiological signals. The study on mechanism of heart sounds signal can provide theo-ry basis for heart sounds auscultation. In this paper,discuss the physical structure of cardiovascular circulation system and the generating mechanism of heart sounds. Then,propose multiscale base-scale entropy of heart sound cycle increment series and related evaluation in-dex. Finally,healthy people and patients with heart failure are diagnosed based on the proposed algorithm. Simulation experiments show that multiscale base-scale entropy of heart sound cycle increment series can accurately distinguish between healthy person and Congestive Heart Failure ( CHF) . The proposed diagnosis parameter based on multiscale base-scale entropy provides a new evidence for clinic of heart failure. Heart sounds can be collected for a long time without holding for the first time. The research on long heart sound signals is of great importance to make the best of heart sound and dig the great potential of heart sound.

相似文献/References:

[1]朱冰莲 刘倩.心音信号的自适应小波去噪[J].计算机技术与发展,2006,(10):83.
 ZHU Bing-lian,LIU Oian.Denoising of Heart Sound Signal Based on Adaptive Wavelet[J].,2006,(09):83.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(09):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(09):43.

更新日期/Last Update: 2015-10-16