[1]胡海峰[][],刘萍萍[]. 一种基于特征间隙的检测簇数的谱聚类算法[J].计算机技术与发展,2015,25(09):37-42.
 HU Hai-feng[][],LIU Ping-ping[]. A Spectral Clustering Algorithm with Identifying Clustering Number Based on Eigengap[J].,2015,25(09):37-42.
点击复制

 一种基于特征间隙的检测簇数的谱聚类算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年09期
页码:
37-42
栏目:
智能、算法、系统工程
出版日期:
2015-09-10

文章信息/Info

Title:
 A Spectral Clustering Algorithm with Identifying Clustering Number Based on Eigengap
文章编号:
1673-629X(2015)09-0037-06
作者:
 胡海峰[1][2] 刘萍萍[1]
1.南京邮电大学 通信与信息工程学院 宽带无线通信与传感网技术教育部重点实验室;2.东南大学 移动通信国家重点实验室
Author(s):
 HU Hai-feng[1][2] LIU Ping-ping[1]
关键词:
 谱聚类簇数特征间隙高斯相似度
Keywords:
 spectral clusteringclustering numbereigengap Gaussian similarity
分类号:
TP301.6
文献标志码:
A
摘要:
 数据挖掘中如何根据数据之间的相似度确定簇( Cluster)数一直是聚类算法中需要解决的难题。文中在经典谱聚( Spectral Clustering)算法的基础上提出了一种基于特征间隙检测簇数的谱聚类算法( Spectral Clustering with Identifying Clustering Number based on Eigengap,SC-ICNE)。通过构建规范的拉普拉斯矩阵,顺序求解其特征值和相应特征向量,并得到矩阵相邻特征值的间隙,通过判断特征间隙的位置来确定簇数k。最后,通过对前k个特征向量的k-means算法实现数据集的聚类。文中通过仿真分析了高斯相似度函数对SC-ICNE聚类性能的影响,在非凸球形数据集和UCI数据集上进行了性能仿真,并和k-means聚类算法进行了对比,在检测簇数和聚类准确性方面,验证了SC-ICNE算法的有效性。
Abstract:
 Choosing the number k of clusters based on the degree of correlation is a general problem for all clustering algorithms. Based on the classical spectral clustering algorithm,propose a Spectral Clustering with Identifying Clustering Number based on Eigengap ( SC-IC-NE) algorithm. The SC-ICNE algorithm computes eigenvalues and corresponding eigenvectors of normalized graph Laplacians sequen-tially. Furthermore,the number of cluster k can be identified via the eigengap between the adjacent eigenvalues. Finally,the data can be clustered using the first k eigenvectors with the k-means algorithm. In the simulation,the effect of the Gaussian similarity function on the cluster performance of SC-ICNE is discussed,and compare the cluster performance of SC-ICNE with the k-means algorithm in non-spherical convex data set and the UCI data set. Simulation results show that the SC-ICNE algorithm achieves high performance in terms of clustering accuracy and identifying the cluster number.

相似文献/References:

[1]沈亚田 沈夏炯 张磊.基于图划分的谱聚类算法在文本挖掘中应用[J].计算机技术与发展,2009,(05):96.
 SHEN Ya-tian,SHEN Xia-jiong,ZHANG Lei.Application of Spectral Cluster Algorithm Based on Graph Partition in Text Mining[J].,2009,(09):96.
[2]王春雪 王继成 郑吉.谱聚类在图像检索中的应用[J].计算机技术与发展,2009,(01):207.
 WANG Chun-xue,WANG Ji-cheng,ZHENG Ji.Application of Spectral Clustering in Image Retrieval[J].,2009,(09):207.
[3]贾志先.考试数据分析及孤立点检测的谱聚类方法[J].计算机技术与发展,2013,(01):103.
 JIA Zhi-xian.Spectral Clustering Method for Exam Data Analysis and Outlier Detection[J].,2013,(09):103.
[4]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(09):1.
[5]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(09):5.
[6]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(09):13.
[7]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(09):21.
[8]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(09):25.
[9]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(09):29.
[10]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(09):34.
[11]李振博,徐桂琼,査九. 基于用户谱聚类的协同过滤推荐算法[J].计算机技术与发展,2014,24(09):59.
 LI Zhen-bo,XU Gui-qiong,ZHA Jiu. A Collaborative Filtering Recommendation Algorithm Based on User Spectral Clustering[J].,2014,24(09):59.
[12]李扬,陆璐,崔红霞. 谱聚类图像分割中相似度矩阵构造研究[J].计算机技术与发展,2016,26(07):55.
 LI Yang,LU Lu,CUI Hong-xia. Research on Similarity Matrix Structure in Spectral Clustering Image Segmentation[J].,2016,26(09):55.
[13]朱庆生,付飘飘,张程. 基于自然邻的自适应谱聚类算法[J].计算机技术与发展,2017,27(11):19.
 ZHU Qing-sheng,FU Piao-piao,ZHANG Cheng. An Adaptive Spectral Clustering Algorithm Based on Natural Neighbor[J].,2017,27(09):19.

更新日期/Last Update: 2015-10-16