[1]尚福华[],姜萌[],马楠[],等. 基于改进马氏聚类方法的油田分类研究[J].计算机技术与发展,2015,25(08):175-178.
 SHANG Fu-hua[],JIANG Meng[],MA Nan[],et al. Research on Oil Classification Based on Improved Mahalanobis Clustering Method[J].,2015,25(08):175-178.
点击复制

 基于改进马氏聚类方法的油田分类研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年08期
页码:
175-178
栏目:
应用开发研究
出版日期:
2015-08-10

文章信息/Info

Title:
 Research on Oil Classification Based on Improved Mahalanobis Clustering Method
文章编号:
1673-629X(2015)08-0175-04
作者:
 尚福华[1] 姜萌[1] 马楠[2] 解红涛[1]
 1.东北石油大学 计算机与信息技术学院;2.中国石油天然气股份有限公司规划总院
Author(s):
 SHANG Fu-hua[1] JIANG Meng[1] MA Nan[2] XIE Hong-tao[1]
关键词:
 聚类分析马氏距离油田分类权重
Keywords:
 cluster analysisMahalanobis distanceoil classificationweight
分类号:
TP39
文献标志码:
A
摘要:
 针对大庆低渗透油田开发效果变差、开发储量品位降低、优选区块技术难度增大,导致原有的评价方法、优选技术、开采方式难以满足低渗透油田发展需要的问题,提出了应用聚类分析的方法对低渗透油田储层进行分类。首先简述聚类分析以及马氏距离的基本原理,并根据油田不同储层参数对储层采出贡献程度不同的特点,以及原有马氏距离在估计协方差矩阵方面难度大导致计算效率低的问题,提出了马氏距离聚类过程中估计协方差矩阵的迭代法。该方法充分考虑到了变量权重和样本类别的影响,对协方差矩阵的估计进行改进,能够在一定程度上减少权值确定上的主观因素并提高计算效率。以油田开发实际数据为例进行实验分类,结果表明该方法是有效可行的。
Abstract:
 Aiming at the problem that original evaluation method,optimal technology and exploring way can’ t meet the development need in Daqing oilfield with low permeability,which caused by worse development effect,lower development grade,and the technology of pre-fer block is more hard,propose that applying the clustering analysis to classify the oil reservoir with low permeability. First,describe the basic principle of cluster analysis and Mahalanobis distance briefly,according to the characteristics that the oil of different reservoir param-eters have different degree of contribution on reservoir recovery and the problem of the original Mahalanobis distance has low calculation efficiency in evaluating covariance matrix,present an iteration method to estimate the covariance matrix of Mahalanobis distance during the cluster analysis. The weights of variables and categories of samples are taken into account,estimation of the covariance matrix is im-proved,the method can reduce the subjective factors on determining weights and improve the computational efficiency in a certain extent. With actual oilfield development data as an example for classification,the experimental results demonstrate the effectiveness of the meth-od.

相似文献/References:

[1]项响琴 汪彩梅.基于聚类高维空间算法的离群数据挖掘技术研究[J].计算机技术与发展,2010,(01):120.
 XIANG Xiang-qin,WANG Cai-mei.Study of Outlier Data Mining Based on CLIQUE Algorithm[J].,2010,(08):120.
[2]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(08):69.
[3]狄明明 孙德山.聚类分析和支持向量机在股票研究中的应用[J].计算机技术与发展,2009,(06):229.
 DI Ming-ming,SUN De-shan.Applications of Cluster Analysis and Support Vector Machines to Stock Research[J].,2009,(08):229.
[4]李雷 罗红旗 丁亚丽.一种改进的模糊C均值聚类算法[J].计算机技术与发展,2009,(12):71.
 LI Lei,LUO Hong-qi,DING Ya-li.A Novel FCM Clustering Algorithm[J].,2009,(08):71.
[5]李丽芳 周鸣争.一种基于构造性核覆盖的聚类算法[J].计算机技术与发展,2009,(01):88.
 LI Li-fang,ZHOU Ming-zheng.A Clustering Algorithm Based on Constructive Kernel Covering Algorithm[J].,2009,(08):88.
[6]朱桂宏 王刚.基于数据流的网络入侵检测研究[J].计算机技术与发展,2009,(03):175.
 ZHU Gui-hong,WANG Gang.Research on Network Intrusion Detection Based on Data Stream[J].,2009,(08):175.
[7]罗世谦 冯子亮 张恒.一种基于能量聚类分析的句子语音端点检测法[J].计算机技术与发展,2008,(04):13.
 LUO Shi-qian,FENG Zi-liang,ZHANG Heng.A Sentential Endpoint Detection Algorithm Based on Energy Eigenvalue and Clustering Analysis[J].,2008,(08):13.
[8]谢铮桂 韦玉科 钟少丹.基于径向基神经网络用于中医舌诊诊断的研究[J].计算机技术与发展,2008,(09):242.
 XIE Zheng-gui,WEI Yu-ke,ZHONG Shao-dan.Research of RBF Neural Networks Based on Clustering Analysis in TCM Inspection of Tongue Diagnosis[J].,2008,(08):242.
[9]徐仰彬 刘志镜.基于DBSCAN的簇共享对象的处理办法[J].计算机技术与发展,2007,(07):38.
 XU Yang-bin,LIU Zhi-jing.A DBSCAN - Based Algorithm for Boundary Object of Cluster[J].,2007,(08):38.
[10]朱建平 曾玉钰.基于属性重要性的定性数据聚类分析及应用[J].计算机技术与发展,2007,(12):89.
 ZHU Jian-ping,ZENG Yu-yu.Analysis and Application of Qualitative Data Clustering Approach Based on Attribute Importance[J].,2007,(08):89.
[11]孙吉红[][],张丽莲[] [],武尔维[][],等. 基于智能算法的价格预测模型探究[J].计算机技术与发展,2014,24(11):107.
 SUN Ji-hong[][],ZHANG Li-lian[][],WU Er-wei[][],et al. Research on Price Prediction Model Based on Intelligent Algorithm[J].,2014,24(08):107.
[12]文念,黄丽亚,于涵,等. 基于ICA和聚类的EEG脑源定位研究[J].计算机技术与发展,2015,25(05):228.
 WEN Nian,HUANG Li-ya,YU Han,et al. EEG Sources Localization Based on Independent Component Analysis and Clustering[J].,2015,25(08):228.
[13]许必宵,陈升波,韩重阳,等. 改进的数据预处理算法及其应用[J].计算机技术与发展,2015,25(12):143.
 XU Bi-xiao,CHEN Sheng-bo,HAN Chong-yang,et al. Improved Data Preprocessing Algorithm and Its Application[J].,2015,25(08):143.
[14]王文霞. 基于分级策略和聚类索引树的构件检索方法[J].计算机技术与发展,2016,26(04):110.
 WANG Wen-xia. A Component Retrieval Method Based on Classified Policy and Cluster Index Tree[J].,2016,26(08):110.
[15]唐丹[],张正军[],王俐莉[]. 基于改进的近邻传播聚类算法的Gap统计研究[J].计算机技术与发展,2017,27(01):182.
 TANG Dan[],ZHANG Zheng-jun[],WANG Li-li[]. Study on Gap Statistic Based on Modified Affinity Propagation Clustering[J].,2017,27(08):182.

更新日期/Last Update: 2015-09-14