[1]卞月根,张伟. 基于非线性卡尔曼滤波的车辆定位优化算法[J].计算机技术与发展,2015,25(08):80-83.
 BIAN Yue-gen,ZHANG Wei. An Optimization Algorithm of Vehicle Positioning Based on Nonlinear Kalman Filter [J].,2015,25(08):80-83.
点击复制

 基于非线性卡尔曼滤波的车辆定位优化算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年08期
页码:
80-83
栏目:
智能、算法、系统工程
出版日期:
2015-08-10

文章信息/Info

Title:
 An Optimization Algorithm of Vehicle Positioning Based on Nonlinear Kalman Filter

文章编号:
1673-629X(2015)08-0080-04
作者:
 卞月根张伟
 南京邮电大学 通信与信息工程学院
Author(s):
 BIAN Yue-genZHANG Wei
关键词:
 车辆定位卡尔曼滤波交互多模算法非线性模型
Keywords:
 vehicle locationunscented Kalman filterinteracting multiple model algorithmnon-linear model
分类号:
TP301.6
文献标志码:
A
摘要:
 智能交通系统( ITS)是未来交通系统发展的重要趋势,为了实现智能交通所提供的各种功能,必须获知车联网中车辆的准确位置。因此,如何快速准确地实现车辆定位是现代智能交通系统所要研究的一个重要问题。实际系统中一般都是非线性系统,所以需要采用非线性的卡尔曼滤波算法。文中采用了非线性无迹卡尔曼滤波算法。无迹卡尔曼滤波在车辆运动状态发生突变时,车辆定位精度有所下降。为了提高无迹卡尔曼滤波算法在车辆运动状态发生突变时的定位精度,文中将自适应的交互多模算法和无迹卡尔曼滤波算法相结合,进一步提高了车辆的定位精度,同时也更能适应车辆的各种机动运动状态。仿真实验结果表明,交互多模无迹卡尔曼滤波算法的定位精度相较于无迹卡尔曼滤波算法有显著提升。
Abstract:
 Intelligent Transportation Systems ( ITS) is an important trend in the development of future transport systems. In order to pro-vide the various functions,the system should acquire the exact position of the vehicle. How to achieve accurate and rapid vehicle position is an important issue which modern intelligent transportation systems must go to research. The actual systems are generally nonlinear sys-tem,so a nonlinear unscented Kalman filter algorithm is used. When the vehicle is in motion is mutated,the accuracy of unscented Kal-man filter algorithm is declined. Due to improving the accuracy of vehicle position while the vehicle is motor-driven,the interacting mul-tiple model algorithm is combined with the unscented Kalman filtering. At the same time,the improved algorithm can adapt to a variety of motion state of the vehicle. Simulation results show that the positioning accuracy of interacting multiple model unscented Kalman filtering algorithm is obviously better than unscented Kalman filtering algorithm.

相似文献/References:

[1]周云锋 左青香 赵卫东.基于数据库通知服务的车辆定位系统的研究[J].计算机技术与发展,2012,(03):89.
 ZHOU Yun-feng,ZUO Qing-xiang,ZHAO Wei-dong.Research of VPS Based on Database Notification Service[J].,2012,(08):89.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.

更新日期/Last Update: 2015-09-11