[1]彭培真,俞毅,王兆嘉,等. 基于单纯形的改进全局人工鱼群优化算法[J].计算机技术与发展,2015,25(08):75-79.
 PENG Pei-zhen,YU Yi,WANG Zhao-jia,et al. Improved Global Artificial Fish Swarm Algorithm Based on Simplex Method[J].,2015,25(08):75-79.
点击复制

 基于单纯形的改进全局人工鱼群优化算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年08期
页码:
75-79
栏目:
智能、算法、系统工程
出版日期:
2015-08-10

文章信息/Info

Title:
 Improved Global Artificial Fish Swarm Algorithm Based on Simplex Method
文章编号:
1673-629X(2015)08-0075-05
作者:
 彭培真俞毅王兆嘉蒋珉
 东南大学 自动化学院 复杂工程系统测量与控制教育部重点实验室
Author(s):
 PENG Pei-zhen YU Yi WANG Zhao-jia JIANG Min
关键词:
 人工鱼群算法全局优化单纯形算法数值仿真
Keywords:
 artificial fish swarm algorithmglobal optimizationsimplex methodnumerical simulation
分类号:
TP202+.7
文献标志码:
A
摘要:
 文中主要研究人工鱼群算法( AFSA)的优化问题。针对全局人工鱼群算法后期收敛速度慢、寻优精度低等缺点,在全局人工鱼群算法(GAFSA)的基础上,提出了一种改进的人工鱼群算法(MS GAFSA)。该算法通过将全局人工鱼群算法与改进单纯形法相结合,以改善算法的收敛速度和寻优精度。 MS GAFSA首先以GAFSA进行迭代,利用GAFSA前期快速收敛及跳出局部最优值的优点收敛至全局最优点附近,此时以所在点为起点构造单纯形,并切换到改进单纯形法继续优化,通过反射、扩张、收缩和紧缩将单纯形翻滚、变形,快速收敛并趋近最优点,直至满足一定的精度条件停止,取此时单纯形上最优顶点值为目标函数最优值。通过对一系列benchmark测试函数的计算和比较,证明了该方法确实在寻优精度、收敛速度方面均有提升。
Abstract:
 In order to overcome the drawbacks of Global Artificial Fish Swarm Algorithm ( GAFSA) ,such as slow convergence and low precision optimization,a modified GAFSA ( MS GAFSA) is proposed,in which the modified simplex method is adopted to improve con-vergence precision and convergence rate. For GAFSA has a faster convergence in optimization of the early and the ability to recognize the local optimum value,a simplex is constructed based on the minimum given by GAFSA when the convergence turned to the stable point. Make the simplex move and roll by reflection,expansion and contraction. Compared the values of the simplex’ s vertexes,constructing a new simplex by the trend of function,and repeating the process till the result is accurate enough. The computational results on benchmark functions show that MS GAFSA achieves higher performance,including convergence precision and convergence rate.

相似文献/References:

[1]王会颖 章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,(03):84.
 WANG Hui-ying,ZHANG Yi-gang.An Improved Artificial Fish- Swarm Algorithm of Solving Clustering Analysis Problem[J].,2010,(08):84.
[2]古明家 宣士斌 廉侃超 李永胜.基于蚁群和人工鱼群算法融合的QoS路由算法[J].计算机技术与发展,2009,(07):145.
 GU Ming-jia,XUAN Shi-bin,LIAN Kan-chao,et al.QoS Routing Algorithm Based on Combination of Modified Ant Colony Algorithm and Artificial Fish Swarm Algorithm[J].,2009,(08):145.
[3]史学军,方金鑫,于舒娟.基于全局人工鱼群算法的盲均衡[J].计算机技术与发展,2013,(05):75.
 SHI Xue-jun,FANG Jin-xin,YU Shu-juan.Blind Equalization Based on Global Artificial Fish Swarm Algorithm[J].,2013,(08):75.
[4]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[5]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[6]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[7]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[8]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[9]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[10]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[11]刘晓丽,熊良鹏. 改进的人工鱼群算法在机器人控制中的应用[J].计算机技术与发展,2015,25(05):200.
 LIU Xiao-li,XIONG Liang-peng. Application of Robot Control Using Improved Artificial Fish Swarm Algorithm[J].,2015,25(08):200.
[12]秦军[],翟钊[]. 基于Hadoop MapReduce的组合服务性能优化研究[J].计算机技术与发展,2016,26(05):61.
 QIN Jun[],ZHAI Zhao[]. Research on Composite Service Performance Optimization Based on Hadoop MapReduce[J].,2016,26(08):61.
[13]唐莉[],张正军[],王俐莉[]. 人工鱼群算法的改进[J].计算机技术与发展,2016,26(11):37.
 TANG Li[],ZHANG Zheng-jun[],WANG Li-l. Improvement of Artificial Fish Swarm Algorithm[J].,2016,26(08):37.
[14]陈亚[],李萍[]. 人工鱼群神经网络在短期负荷预测中的应用[J].计算机技术与发展,2017,27(10):189.
 CHEN Ya[],LI Ping[]. Application of Artificial Fish Swarm Neural Network in Short Term Load Forecasting[J].,2017,27(08):189.

更新日期/Last Update: 2015-09-11