[1]邱丽君[],唐加山[].一种快速的两步骤图像匹配新算法[J].计算机技术与发展,2015,25(08):67-70.
 QIU Li-jun[],TANG Jia-shan[]. A New Fast Two-step Image Matching Algorithm[J].,2015,25(08):67-70.
点击复制

一种快速的两步骤图像匹配新算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年08期
页码:
67-70
栏目:
智能、算法、系统工程
出版日期:
2015-08-10

文章信息/Info

Title:
 A New Fast Two-step Image Matching Algorithm
文章编号:
1673-629X(2015)08-0067-04
作者:
 邱丽君[1] 唐加山[2]
 1.南京邮电大学 通信与信息工程学院;2.南京邮电大学 理学院,
Author(s):
 QIU Li-jun[1] TANG Jia-shan[2]
关键词:
 由粗到细快速图像匹配双直方图哈希算法ORB算子
Keywords:
 coarse-to-finefast image matchingtwo-column histogram hashing algorithmORB operator
分类号:
TP391.41
文献标志码:
A
摘要:
 图像匹配时间包括特征提取时间和特征点匹配时间,减少特征提取时间,能够大大提高图像匹配效率。目前,普遍的匹配算法对整幅图像进行特征提取,当图像较大时,特征提取时间长,影响匹配效率。文中提出一种由粗到细的两步骤快速图像匹配新算法,这种算法在特征提取时间上作了改进。粗匹配阶段,用双直方图( TCH)哈希算法进行模板匹配,找到与模板最相似的图像区域,缩小ORB特征提取的范围。细匹配阶段,在找到的最相似区域,用高速的ORB算子提取和描述特征点。最后,用欧氏距离法进行特征向量的匹配。由于特征提取的范围被缩小到一个很小的区域,总匹配时间大大减少。实验结果表明,文中提出的图像匹配算法,在保持高匹配鲁棒性的前提下,与SIFT、SURF和ORB算法相比,匹配速度有了很大提高。
Abstract:
 Image matching time includes feature extraction time and feature points matching time, reduction of image matching time can enormously enhance the efficiency of image matching. Presently,common matching algorithm extract features in the whole picture. Time of feature extraction can be very long when the image be processed is big,which depresses matching efficiency. A fast image matching method using a novel two-step searching strategy ( coarse-to-fine) is proposed in this paper. At coarse matching stage,a novel two-col-umn histogram hashing is used to find approximate location where target object may appear,narrowing the scope of the ORB feature ex-traction. In the refining stage,key points are detected and described in the coarser scales using ORB. The Euclidean distance strategy is then employed to implement matching. Narrowing the feature extraction scale to a small area,so the whole image matching time is de-creased largely. Experimental results show that the proposed approach outperforms the state-of-the-art algorithms in the speed of image matching on the premise of maintaining the high matching robustness.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(08):47.

更新日期/Last Update: 2015-09-11