[1]赵礼峰,梁娟. Ford算法的改进算法[J].计算机技术与发展,2015,25(07):72-75.
 ZHAO Li-feng,LIANG Juan. Improved Algorithm of Ford Algorithm[J].,2015,25(07):72-75.
点击复制

 Ford算法的改进算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年07期
页码:
72-75
栏目:
智能、算法、系统工程
出版日期:
2015-07-10

文章信息/Info

Title:
 Improved Algorithm of Ford Algorithm
文章编号:
1673-629X(2015)07-0072-04
作者:
 赵礼峰梁娟
 南京邮电大学 理学院
Author(s):
 ZHAO Li-fengLIANG Juan
关键词:
 最短路Ford算法不含负回路网络改进算法
Keywords:
 the shortest pathFord algorithmnetwork without negative loopimproved algorithm
分类号:
TP301.6
文献标志码:
A
摘要:
 Ford算法是求解不含负回路网络中从源节点到其余各节点最短路径的经典算法。但每次逼近中,都要计算所有节点的入弧,重复计算量大,降低了计算效率。为此,文中通过引入两个数组和只计算权值变小的节点的所有出弧对Ford算法进行改进,改进后的算法既能快速地计算从源节点到其余各节点的最短路权值,又能更直观地找出最短路径。最后通过具体实例分析和仿真结果表明,改进算法不仅简化了计算量,降低了时间复杂度,而且增强了寻路直观性。
Abstract:
 Ford algorithm is a classical algorithm that finds the shortest path from the source node to other nodes in solving the network without negative loop. However,all incoming arcs weights are needed to be calculated from all nodes in each approximation,and the a-mount of repeated calculation increases which decreases the efficiency of the algorithm. Ford algorithm is improved in this paper by intro-ducing two arrays and calculating all outgoing arcs weights from nodes whose weight become smaller. The improved algorithm can both calculate the shortest path weights more quickly and find the shortest paths more directly from the source node to other nodes. Finally,the specific analysis and simulation results indicate that the improved algorithm not only simplifies the amount of calculation and reduces the time complexity,but also enhances the intuition of finding the shortest path.

相似文献/References:

[1]赵礼峰 宋常城 白睿.基于最小费用最大流问题的“排序”算法[J].计算机技术与发展,2011,(12):82.
 ZHAO Li-feng,SONG Chang-cheng,BAI Rui.Sequence Algorithm Based on Minimum Cost and Maximum Flow[J].,2011,(07):82.
[2]赵礼峰,蒋腾飞.无回路网络最短路径的一种新算法[J].计算机技术与发展,2013,(02):105.
 ZHAO Li-feng,JIANG Teng-fei.A New Algorithm for Shortest Path in DAG[J].,2013,(07):105.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[11]赵礼峰,梁娟. 最短路问题的Floyd改进算法[J].计算机技术与发展,2014,24(08):31.
 ZHAO Li-feng,LIANG Juan. Improved Floyd Algorithm for Shortest Paths Problem[J].,2014,24(07):31.

更新日期/Last Update: 2015-09-07