[1]田豪爽[],戴东波[],张惠然[],等. 基于consR的并行图匹配方法[J].计算机技术与发展,2015,25(07):20-26.
 TIAN Hao-shuang[],DAI Dong-bo[],ZHANG Hui-ran[],et al. Parallel Graph Matching Method Based on consR Algorithm[J].,2015,25(07):20-26.
点击复制

 基于consR的并行图匹配方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年07期
页码:
20-26
栏目:
智能、算法、系统工程
出版日期:
2015-07-10

文章信息/Info

Title:
 Parallel Graph Matching Method Based on consR Algorithm
文章编号:
1673-629X(2015)07-0020-07
作者:
 田豪爽[1]戴东波[2] 张惠然[2] 谢江[2]
 1.上海大学 计算机工程与科学学院;2.上海大学 高性能计算中心
Author(s):
 TIAN Hao-shuang[1] DAI Dong-bo[2] ZHANG Hui-ran[2] XIE Jiang[2]
关键词:
 图匹配consR算法归并排序并行化
Keywords:
 graph matchingconsR algorithmmerge sortparallelism
分类号:
TP391;TP311
文献标志码:
A
摘要:
 随着社交网络、生物网络规模的迅速扩大,能够快速、高效地实现对这些网络的匹配、查询等工作已经成为许多应用领域的迫切需求。给定两个网络图,图匹配的过程即为对图G1中的每个节点在图G2中找到唯一一个相对应的最为相似的节点,使得给定的两个图的匹配边的数量最多。文中基于大图匹配方法consR,进行了两方面的优化:当图的节点数目较少时,优化了图G1、G2的相似性矩阵计算策略,从而使得图匹配的计算更加快捷;当图的节点数目较大时,针对匹配过程中最为耗时的步骤进行并行优化处理。实验结果表明,在与consR方法计算出的匹配结果保持一致的情况下,一定程度上缩短了图匹配计算时间。
Abstract:
 With the rapid enlargement of the size of social network and biology network,how to implement the network matching and querying fast and efficiently has become an urgent need in many application research. Given two graphs G1 and G2 ,the task of graph matc-hing is to find,for each node in G1 ,the most similar node in G2 to maximize the number of matched edges. In this paper,based on the ef-fective large graph matching method consR,improve its efficiency from two aspects. When the number of nodes in the graph is relatively small,the computation cost for similarity matrix of G1 and G2 is reduced by a simplified yet effective computing strategy. When the number of nodes is large,adopt parallel strategy to speed up the matching procedure for large graphs. The experimental results show that the pro-posed method reduces the computation time of image matching at a certain extent while gets as good matching results as consR does.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.

更新日期/Last Update: 2015-09-06