[1]王寅峰[][][],王龙翔[]. 一种基于V3模型的内存数据库性能分析研究[J].计算机技术与发展,2015,25(06):77-83.
 WANG Yin-feng[][][],WANG Long-xiang[]. Research on Performance Survey in Memory Database Based on V3-model[J].,2015,25(06):77-83.
点击复制

 一种基于V3模型的内存数据库性能分析研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年06期
页码:
77-83
栏目:
智能、算法、系统工程
出版日期:
2015-06-10

文章信息/Info

Title:
 Research on Performance Survey in Memory Database Based on V3-model
文章编号:
1673-629X(2015)06-0077-07
作者:
 王寅峰[1][2][3] 王龙翔[2]
 1.深圳信息职业技术学院 软件学院;2.北京航空航天大学深圳研究院;3.西安交通大学 电信学院
Author(s):
 WANG Yin-feng[1][2][3] WANG Long-xiang[3]
关键词:
 内存数据库事物处理性能模型高频量化多核计算
Keywords:
 memory databasetransactionperformance model high-frequency tradingmulti-core computing
分类号:
TP31
文献标志码:
A
摘要:
 针对大数据时代各种复杂业务对数据处理日益增长的性能要求,以及对数据管理中:模式自由、高可用、轻量级复制、大容量水平可扩展等方面的需要,文中从内存数据库的存储类型、体系结构、规模、并发性、可用性与可扩展性等方面对19种主流内存数据库进行了对比分析。提出了一种综合考虑处理速度、规模与可扩展性的V3性能模型,对主流内存数据库进行了分类,并选取了有代表性的内存数据库在高频量化交易测试环境进行性能分析与测试。结果表明,NewSQL数据库有较好的综合性能。为提高内存数据库在多任务并行情况下处理的速度,文中对多核环境中内存数据库的设计与优化进行了分析,将优化过程分为访存、并发加速和数据划分模式,并对内存数据库发展进行了展望。
Abstract:
 To satisfy the ever-increasing performance demand of Big Data and critical application’ s operation,the data management needs to offer the flexible schema,high availability,light weight replica,high volume and high scalability features,the 19 kinds of main memory database has carried on the comparison and analysis from storage type,system structure,scale,concurrency,availability and scalability in the memory database. The V3 performance model is proposed considering the velocity,volume and scalability comprehensively,classifying the main memory database,and selecting the representative in-memory database to conduct the analysis and testing in the high frequency of quantitative trading environment. Test results clearly demonstrate that NewSQL is better at dealing with high-frequency trading mod-els. To increase the parallel processing speed of memory database under the condition of multitasking,the design and optimization for memory database of the multi-core environment are analyzed,and the optimization process is divided into fetching,concurrent accelera-tion and data classification mode,and development of memory database is discussed.

相似文献/References:

[1]石英伟 姜浩.实用内存数据库核心及其在VLR系统中的应用[J].计算机技术与发展,2008,(01):216.
 SHI Ying-wei,JIANG Hao.Core of Main Memory Database and Application in VLR System[J].,2008,(06):216.
[2]王宏伟,方群,陈伟.基于内存数据库的OPC监测系统的设计与实现[J].计算机技术与发展,2013,(07):242.
 WANG Hong-wei,FANG Qun,CHEN Wei.Design and Realization of OPC Real-time Monitor System Based on Main Memory Database[J].,2013,(06):242.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(06):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(06):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(06):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(06):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(06):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(06):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(06):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(06):38.

更新日期/Last Update: 2015-07-27