[1]孙闻,韩立新.一种面向社会化标签的并行双聚类算法[J].计算机技术与发展,2015,25(05):33-36.
 SUN Wen,HAN Li-xin. A Parallel Biclustering Algorithm for Social Tagging[J].,2015,25(05):33-36.
点击复制

一种面向社会化标签的并行双聚类算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年05期
页码:
33-36
栏目:
智能、算法、系统工程
出版日期:
2015-05-10

文章信息/Info

Title:
 A Parallel Biclustering Algorithm for Social Tagging
文章编号:
1673-629X(2015)05-0033-04
作者:
 孙闻韩立新
 河海大学 计算机与信息学院
Author(s):
 SUN WenHAN Li-xin
关键词:
 社会化数据并行几何双聚类子双聚类
Keywords:
 social data parallelgeometric biclusteringsub-biclustering
分类号:
TP301.6
文献标志码:
A
摘要:
 随着社会化网络的快速发展,社会化数据呈现爆炸式增长,挖掘社会化数据的局部信息成为有效利用社会化数据的研究热点。相对于传统聚类方法,双聚类能够更好地挖掘社会化数据中的局部信息。较高的计算复杂度成为使用双聚类挖掘大数据集中局部信息的关键问题。通过对几何双聚类产生过程的研究与分析,提出了一种改进的并行几何双聚类方法。该方法通过过滤子双聚类合并过程中产生无效的子双聚类,降低算法的计算量,而且利用多核计算机的优势,使用并行算法,从而提高双聚类算法的效率。
Abstract:
 With the rapid development of social networks,a great number of social data can be acquired. Extracting the local information has become the focus in the research of social data. Compared with traditional clustering method,biclustering can better exploit the local information of the social data. However,the computational complexity of biclustering is high,which is the bottleneck of mining the local information. Based on researching and analyzing the process of generating biclustering,propose an improved parallel geometric bicluster-ing method. By filtering the invalid biclustering which was generated in the process of combining sub-bicluster,the complexity can be re-duced. Moreover,by using the advantages of multi-core processors and the parallel algorithm,can improve the efficiency of biclustering on social data.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(05):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(05):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(05):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(05):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(05):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(05):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(05):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(05):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(05):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(05):47.

更新日期/Last Update: 2015-06-23