[1]何绯娟,缪相林,许大炜,等. 基于“读者-图书”二部图的个性化图书推荐方法[J].计算机技术与发展,2015,25(05):25-28.
 HE Fei-juan,MIAO Xiang-lin,XU Da-wei,et al. Personalized Recommendation of Books Based on “Reader-Book”Bipartite Graph[J].,2015,25(05):25-28.
点击复制

 基于“读者-图书”二部图的个性化图书推荐方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年05期
页码:
25-28
栏目:
智能、算法、系统工程
出版日期:
2015-05-10

文章信息/Info

Title:
 Personalized Recommendation of Books Based on “Reader-Book”Bipartite Graph
文章编号:
1673-629X(2015)05-0025-04
作者:
 何绯娟缪相林许大炜毕鹏
 西安交通大学城市学院
Author(s):
 HE Fei-juanMIAO Xiang-linXU Da-weiBI Peng
关键词:
 二部图个性化推荐图书兴趣冷启动
Keywords:
 bipartite graphpersonalized recommendationbookinterestcold start
分类号:
TP391.2
文献标志码:
A
摘要:
 个性化图书推荐已成为图书馆领域关注的热点问题,但面临着读者兴趣、图书内容难以获取以及“冷启动”等一系列挑战。文中基于图书借阅行为建立“读者—图书”二部图模型,并基于此提出个性化图书推荐方法。该方法首先根据书名计算图书之间相似度;其次,基于读者兴趣相似度对读者进行聚类,并生成每个读者的获选图书集合;最后计算每个读者与候选图书集合中每本图书的匹配度,并排序后输出推荐图书列表。实验结果表明,该方法能在未知读者兴趣、图书内容的情况下,有效地实现个性化图书推荐,并缓解了“冷启动”问题。
Abstract:
 Personalized book recommendations have become a hot area in library science. Current recommending methods,however,are facing the difficulty to automatically acquire reader interests and book topics,and the “cold start” problem. A novel personalized book recommending method based on “Reader-Book” bipartite graph derived from the book lending behavior is proposed. First,the semantic similarities among books are calculated utilizing the book titles. Second,readers are divided into different groups with the use of clustering analysis based on the similarity of reader interests. Every group is assigned a selected book set. Finally,each reader is recommended a preferable book list based on the matching degree between reader and book. Experimental results show that this method can recommend personalized books to a reader without knowing reader interests and book topics,and alleviate the “cold start” problem.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(05):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(05):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(05):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(05):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(05):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(05):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(05):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(05):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(05):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(05):47.

更新日期/Last Update: 2015-06-23