[1]齐华[],李晓[],刘军[],等. 面向污水监控系统的自适应加权数据融合算法[J].计算机技术与发展,2015,25(04):221-224.
 QI Hua[],LI Xiao[],LIU Jun[],et al. Adaptive Weighted Data Fusion Algorithm Faced to Wastewater Monitoring System[J].,2015,25(04):221-224.
点击复制

 面向污水监控系统的自适应加权数据融合算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年04期
页码:
221-224
栏目:
应用开发研究
出版日期:
2015-04-10

文章信息/Info

Title:
 Adaptive Weighted Data Fusion Algorithm Faced to Wastewater Monitoring System
文章编号:
1673-629X(2015)04-0221-04
作者:
 齐华[1] 李晓[1] 刘军[2] 杨超[3]
 1.西安工业大学 电子信息工程学院;2.武警工程学院 通信工程系,陕西;3.海军航空工程学院 电子信息工程系
Author(s):
 QI Hua[1] LI Xiao[1] LIU Jun[2] YANG Chao[3]
关键词:
 污水监测无线传感器网络数据融合自适应加权
Keywords:
 wastewater monitoringwireless sensor networksdata fusionadaptive weighted
分类号:
TP274.2
文献标志码:
A
摘要:
 水是人类身体组织构成的重要成分,水质的好坏与人们日常生活更是息息相关。实时掌握水质状况能帮助人们最大限度地降低水质污染给人们身体及其日常生活带来的危害,保证人们正常生活。针对传统的污水监测系统监测周期长、时间覆盖率低等缺点,引入无线传感器网络实现实时监测,并对其网内传输数据运用自适应加权数据融合算法进行处理。仿真结果表明,该算法基本上能满足污水监测系统对数据的要求,并达到节省能量、提高效率的效果。同时,经融合后数据量减少进而缓解了网络拥塞,延长了网络寿命。
Abstract:
 Water is an important component of human body tissue composition,and water quality is closely related to the daily life of peo-ple. The real-time control water quality can help people to reduce the harm of water pollution that brought to the people body and daily life,to ensure the normal life of people. In view of long monitoring cycle,low time coverage and other shortcomings for the traditional wastewater monitoring system,introduce the wireless sensor network to realize real-time monitoring,and for network data transmission, use the adaptive weighted data fusion algorithm for processing. The simulation results show that the algorithm can basically meet the re-quirements of wastewater monitoring system of data,saving the energy and improving the efficiency. Meanwhile,the amount of data re-duces after the fusion and thus alleviates the network congestion,extending the network life cycle.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(04):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(04):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(04):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(04):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(04):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(04):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(04):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(04):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(04):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(04):47.

更新日期/Last Update: 2015-06-08