[1]崔树林[][],张旭[],张树清[],等. 基于GPU的大规模栅格数据分块并行处理方法[J].计算机技术与发展,2015,25(03):19-22.
 CUI Shu-lin[][],ZHANG Xu[],ZHANG Shu-qing[],et al. Parallel Processing Method for Large Scale Raster Data Blocking Based on GPU[J].,2015,25(03):19-22.
点击复制

 基于GPU的大规模栅格数据分块并行处理方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年03期
页码:
19-22
栏目:
智能、算法、系统工程
出版日期:
2015-03-10

文章信息/Info

Title:
 Parallel Processing Method for Large Scale Raster Data Blocking Based on GPU
文章编号:
1673-629X(2015)03-0019-04
作者:
 崔树林[1][2] 张旭[2] 张树清[3] 张军[1]
 1.中山大学 信息科学与技术学院;2.吉林大学珠海学院;3.吉林大学珠海学院;4.中国科学院 东北地理与农业生态研究所
Author(s):
 CUI Shu-lin[1][2] ZHANG Xu[2] ZHANG Shu-qing[3] ZHANG Jun[1]
关键词:
 GPU分块膨胀栅格数据
Keywords:
 GPUblock-baseddilationraster data
分类号:
P208
文献标志码:
A
摘要:
 数学形态学运算是栅格数据处理的重要方法,具有较高的计算复杂度、并行度等特点,较容易发挥GPU众核高度并行执行的优势,以提高其计算效率。然而,有限的GPU全局存储器限制了其在大规模数据中的应用。文中在分析现有栅格数据并行方法的基础上,基于通用并行计算架构CUDA,设计一种适应大规模数据的分块处理方法。文中以经典的膨胀算法为例对分块处理方法进行测试。实验结果表明:与传统的CPU串行处理方法相比,该方法可以显著提高数据处理速度。
Abstract:
 Mathematical morphology operations are important methods in the field of raster data processing,with high degree of computa-tional complexity and parallelism. GPU-based hypercore parallel computing method can significantly improve the calculation speed. How-ever,GPU’ s global memory limits its application in large scale data. Present a block-based method for large scale data,based on a gener-al purpose parallel computing architecture,after analyzing the present parallel method for raster data. The new method is specifically tested with the classical dilation algorithm. Experimental results show that the calculation speed of the new method is faster than that of tradition-al sequence algorithm based on CPU.

相似文献/References:

[1]喻家龙 姜太平 汪光阳.在GPU上基于物体空间的碰撞检测[J].计算机技术与发展,2009,(09):83.
 YU Jia-long,JIANG Tai-ping,WANG Guang-yang.Object- Space Collision Detection on Programmable Graphics Hardware[J].,2009,(03):83.
[2]陈加忠 夏涛 欧阳昆 黎单 孙自龙.GPU平台上ADL算法的实现[J].计算机技术与发展,2011,(01):165.
 CHEN Jia-zhong,XIA Tao,OUYANG-Kun,et al.Implementation of ADL Algorithm on GPU[J].,2011,(03):165.
[3]任庆东,刘跃平,袁旭公.风场作用下大规模真实感草地模拟[J].计算机技术与发展,2013,(04):198.
 REN Qing-dong,LIU Yue-ping,YUAN Xu-gong.Simulation of Large-scale Realistic Lawn Subjected to Wind Field[J].,2013,(03):198.
[4]李玥,丁友东.并行正向反馈ICP算法研究[J].计算机技术与发展,2013,(11):6.
 LI Yue,DING You-dong.Research of Positive Feedback ICP Algorithm in Parallel[J].,2013,(03):6.
[5]董敏[],阎镇.基于CUDA的航天遥感图像实时快视系统的研究[J].计算机技术与发展,2014,24(06):32.
 DONG Min[][][],YAN Zhen[].Research on Aerospace Remote Sensing Images Real-time Quick-view System Based on CUDA[J].,2014,24(03):32.
[6]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(03):1.
[7]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(03):5.
[8]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(03):13.
[9]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(03):21.
[10]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(03):25.
[11]范晓晔,田丰林,陈戈. 基于GPU的实时群体仿真算法实现[J].计算机技术与发展,2014,24(11):17.
 FAN Xiao-ye,TIAN Feng-lin,CHEN Ge. Implementation of Real-time Crowds Simulation Algorithm Based on GPU[J].,2014,24(03):17.
[12]王文博,殷宏,解文彬,等. GPU细分着色器中的地形无缝自适应细分[J].计算机技术与发展,2015,25(12):105.
 ANG Wen-bo,YIN Hong,XIE Wen-bin,et al. Real-time Terrain Tessellation on GPU Using Tessellation Shaders[J].,2015,25(03):105.

更新日期/Last Update: 2015-04-30