[1]贺玫璐,罗杰. 基于模拟退火机制的精英协同进化算法[J].计算机技术与发展,2015,25(01):91-95.
 HE Mei-lu,LUO Jie. Elite Co-evolutionary Genetic Algorithm Based on Simulated Annealing Mechanism[J].,2015,25(01):91-95.
点击复制

 基于模拟退火机制的精英协同进化算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年01期
页码:
91-95
栏目:
智能、算法、系统工程
出版日期:
2015-01-10

文章信息/Info

Title:
 Elite Co-evolutionary Genetic Algorithm Based on Simulated Annealing Mechanism
文章编号:
1673-629X(2015)01-0091-05
作者:
 贺玫璐罗杰
 南京邮电大学 自动化学院
Author(s):
 HE Mei-luLUO Jie
关键词:
 精英策略协同进化模拟退火收敛速度全局寻优能力
Keywords:
 elitist strategyco-evolutionsimulated annealingconvergence speed ability of global optimization
分类号:
TP301.6
文献标志码:
A
摘要:
 为了获取更好的全局寻优性能,同时保持较快的收敛速度,文中结合精英策略、协同进化思想和模拟退火机制,提出了一种基于模拟退火机制的精英协同进化算法( SACEA)。算法维持三个种群:精英种群、普通种群和随机种群。精英个体组团,并和其他组员个体协作或对其引导来达到进化目的。 SACEA算法在精英组团过程中引入随机种群以增加种群多样性,同时随机个体和精英个体的合作采用快速模拟退火机制来实现,使算法获得了更好的全局寻优性。通过对15组标准测试函数的仿真,并和已有的算法进行对比,很容易得出:SACEA算法具有更强的全局寻优能力,同时收敛速度也有所提高。
Abstract:
 In order to get better global optimization performance and maintain the fast convergence speed,combined with the elite strategy and the concept of co-evolutionary and simulated annealing mechanism,put forward a new algorithm,that is the elite co-evolutionary ge-netic algorithm based on simulated annealing method ( SACEA) . The algorithm maintains three populations including elite population, common population and stochastic population. And then elite individuals form teams and exchange information with other team members with the cooperating operation or leading operation. SACEA introduces the stochastic population to evolution to improve diversity of pop-ulation,at the same time,the stochastic individual and the elite individual using fast simulated annealing method to realize the purpose of cooperation. Through all above,the algorithm gets the better global optimization performance. Simulation on 15 standard test simulation and compared with existing algorithms,it is clearly shown that SACEA has better ability of searching globally optimal solution and makes an improvement in convergence speed.

相似文献/References:

[1]杨磊 于舒娟.基于精英策略的逆向蚁群优化盲检测算法[J].计算机技术与发展,2010,(12):90.
 YANG Lei,YU Shu-juan.Blind Detection Based on a Converse Ant Algorithm Using Elitist Strategy[J].,2010,(01):90.
[2]周飞,罗杰.基于远缘杂交的精英进化算法[J].计算机技术与发展,2013,(02):93.
 ZHOU Fei,LUO Jie.Elite Evolutionary Algorithm Based on Distant Hybridization[J].,2013,(01):93.
[3]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[4]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[5]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[6]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[7]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(01):25.
[8]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(01):29.
[9]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(01):34.
[10]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(01):38.

更新日期/Last Update: 2015-04-17