[1]刘慧慧. 一种改进的粒子群多目标优化算法研究[J].计算机技术与发展,2015,25(01):87-90.
 LIU Hui-hui. Research on an Improved Multi-objective Optimization Algorithm of Particle Swarm[J].,2015,25(01):87-90.
点击复制

 一种改进的粒子群多目标优化算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
25
期数:
2015年01期
页码:
87-90
栏目:
智能、算法、系统工程
出版日期:
2015-01-10

文章信息/Info

Title:
 Research on an Improved Multi-objective Optimization Algorithm of Particle Swarm
文章编号:
1673-629X(2015)01-0087-04
作者:
 刘慧慧
 南京邮电大学 自动化学院
Author(s):
 LIU Hui-hui
关键词:
 多目标优化粒子群算法多子种群外部档案
Keywords:
 multi-objective optimizationparticle swarm algorithmmulti-sub-populationexternal archive
分类号:
TP31
文献标志码:
A
摘要:
 为了解决多目标优化过程中各个解之间存在的资源争夺、冲突,算法由于趋同性而带来的早熟无法收敛等缺点,文中提出了一种多子种群协同优化粒子群算法。算法分别采用不同的种群优化不同的目标,并且在算法中引入外部档案和精英学习策略,使得算法能够得到更多的外部档案的解供选择,精英学习策略是为了使算法的分布性和收敛性更好。最后将算法应用到多目标测试函数中,通过实验验证了改进后的算法的收敛性和分布性都比经典多目标算法NSGA-II要好。
Abstract:
 To solve the problem that resource contention and conflict between the various solutions in multi-objective optimization pro-cessing,and can’t be convergence duo to the precocious brought by convergence,introduce a multi-sub-population co-evolution mecha-nism to overcome these shortcomings. The algorithm has adopted different populations to optimize different targets. Meanwhile,it intro-duces an external archive and elite learning strategies,in this way it can obtain more solutions of external archive to choose. Elite learning strategies makes the algorithm has a better distribution and convergence. Finally,the algorithm is applied into the multi-objective test function,the experimental results show that the improved algorithm has a better convergence and distribution than NSGA II.

相似文献/References:

[1]廖宁 刘建勋 王俊年.DPSO算法在服务网格资源调度中的应用[J].计算机技术与发展,2009,(08):104.
 LIAO Ning,LIU Jian-xun,WANG Jun-nian.Application of Discrete Particle Swarm Optimization Algorithm to Service Grid Resource Optimization Scheduling[J].,2009,(01):104.
[2]王丽红 倪志伟 高雅卓.改进的蚁群算法求解多目标车间作业调度问题[J].计算机技术与发展,2008,(10):49.
 WANG Li-hong,NI Zhi-wei,GAO Ya-zhuo.An Improved Ant Colony Algorithm for Multi - Objective Job - Shop Scheduling Problem[J].,2008,(01):49.
[3]饶玉佳 程家兴 夏军 李志俊.基于佳点集的多目标遗传算法[J].计算机技术与发展,2008,(12):67.
 RAO Yu-jia,CHENG jia-xing,XIA Jun,et al.Multi- Objective Optimization Genetic Algorithm Based on Good Point Set[J].,2008,(01):67.
[4]罗景峰 刘艳秋.一种全终端网络可靠性多目标优化模型及求解[J].计算机技术与发展,2007,(08):23.
 LUO Jing-feng,LIU Yan-qiu.A Multi- Objective Optimization Model for All- Terminal Networks Reliability and Its Solutions[J].,2007,(01):23.
[5]吴昊,杨佳,王会颖,等.求解人力资源分配问题的多目标和声搜索算法[J].计算机技术与发展,2013,(02):65.
 WU Hao,YANG Jia,WANG Hui-ying,et al.Multi-objective Harmony Search Algorithm for Solving Human Resource Allocation Problem[J].,2013,(01):65.
[6]王越,吕光宏.改进的粒子群求解多目标优化算法[J].计算机技术与发展,2014,24(02):42.
 WANG Yue,Lü Guang-hong.Modified Particle Swarm Optimization Algorithm Solving Multi-objective[J].,2014,24(01):42.
[7]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(01):1.
[8]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(01):5.
[9]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(01):13.
[10]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(01):21.
[11]殷小龙,李君,万明祥. 云环境下基于改进NSGA II的虚拟机调度算法[J].计算机技术与发展,2014,24(08):71.
 YIN Xiao-long,LI Jun,WAN Ming-xiang. Virtual Machines Scheduling Algorithm Based on Improved NSGA II in Cloud Environment[J].,2014,24(01):71.
[12]黄志川,吴蒙. 多目标优化的相控阵三维方向调制方法[J].计算机技术与发展,2016,26(11):111.
 HUANG Zhi-chuan,WU Meng. Three-dimensional Direction Modulation of Phased Array Based on Multi-objective Optimization[J].,2016,26(01):111.
[13]娄艳秋[],庄毅[],顾晶晶[],等. 协同干扰环境下基于IMOABC的任务调度方法[J].计算机技术与发展,2017,27(11):46.
 LOU Yan-qiu[],ZHUANG Yi[],GU Jing-jing[],et al. A Task Scheduling Method Based on IMOABC in Collaboration Interference Environment[J].,2017,27(01):46.

更新日期/Last Update: 2015-04-17