[1]王小辉,李圣普,吕海莲. 基于布谷鸟算法的WSN节点定位研究[J].计算机技术与发展,2014,24(12):208-211.
 WANG Xiao-hu,LI Sheng-pu,Lü Hai-lian. Research on WSN Node Positioning Based on Cuckoo Searching Algorithm[J].,2014,24(12):208-211.
点击复制

 基于布谷鸟算法的WSN节点定位研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年12期
页码:
208-211
栏目:
应用开发研究
出版日期:
2014-12-10

文章信息/Info

Title:
 Research on WSN Node Positioning Based on Cuckoo Searching Algorithm
文章编号:
1673-629X(2014)12-0208-04
作者:
 王小辉李圣普吕海莲
 平顶山学院 计算机科学与技术学院
Author(s):
 WANG Xiao-huLI Sheng-puLü Hai-lian
关键词:
 传感器节点定位DV-Hop算法Cuckoo搜索算法累积误差
Keywords:
 sensor node positioningDV-Hop algorithmCuckoo searching algorithmaccumulative error
分类号:
TP301.6
文献标志码:
A
摘要:
 传感器节点定位技术是无线传感器网络( WSN)的核心技术之一。文中针对DV-Hop传感器定位算法在定位过程中产生累积误差的问题,首先提出改进的DV-Hop算法修正DV-Hop算法中的平均跳距,然后应用Cuckoo(布谷鸟)搜索算法进一步减少传感器节点定位的误差,最后采用仿真实验对其性能进行测试。仿真实验结果表明,文中所提出的混合算法,与纯DV-Hop算法相比,不但使用更少锚节点节省硬件成本,而且定位精度较高。混合算法能够达到理想的定位精度与效果,具有较高的实用价值。
Abstract:
 The sensor node positioning is the supportive technology in Wireless Sensor Network ( WSN) . DV-Hop algorithm has the ac-cumulative errors during the sensor positioning procedure. In view of this problem,first an improved DV-Hop algorithm is presented to correct the distance of the average hop in DV-Hop algorithm,then introduce Cuckoo searching algorithm to optimize the sensor node po-sitioning errors,and finally apply simulation experiment to test the performance. The simulation experimental results illustrate that the pro-posed algorithm not only uses the less anchor nodes to save the hardware cost,but also increases the sensor positioning precisions com-pared with DV-Hop algorithm. The proposed algorithm can obtain ideal positioning accuracy and effect with high practical value.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(12):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(12):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(12):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(12):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(12):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(12):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(12):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(12):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(12):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(12):47.

更新日期/Last Update: 2015-04-16