[1]魏敏[][],徐金秀[],王在志[]. 并行I/O技术在气候数值模式中的应用研究[J].计算机技术与发展,2014,24(12):11-15.
 WEI Min[][],XU Jin-xiu[] WANG Zai-zhi[]. Study and Application of Parallel I/O Technology in Numerical Climate Model[J].,2014,24(12):11-15.
点击复制

 并行I/O技术在气候数值模式中的应用研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年12期
页码:
11-15
栏目:
智能、算法、系统工程
出版日期:
2014-12-10

文章信息/Info

Title:
 Study and Application of Parallel I/O Technology in Numerical Climate Model
文章编号:
1673-629X(2014)12-0011-05
作者:
 魏敏[1][2]徐金秀[3]王在志[4]
 1.中国气象局 国家气象信息中心;2.清华大学 地球系统科学研究中心;3.江南计算技术研究所,江苏;4.中国气象局 国家气候中心
Author(s):
 WEI Min[1][2] XU Jin-xiu[3] WANG Zai-zhi[4]
关键词:
 高性能计算气候数值模式并行I/ONetCDF
Keywords:
 high performance computingnumerical climate modelparallel I/ONetCDF
分类号:
TP312
文献标志码:
A
摘要:
 在气候变化数值模拟工作中,气候数值模式运行效率主要受到计算效率和I/O效率的共同影响。目前,模式计算部分已经基本实现并行,计算效率显著提升。随着气候数值模式时空分辨率的提高,对I/O效率的需求也不断增加,数据并行I/O技术已经成为提高模式整体运行效率的有效方法之一。文中深入分析了BCC AGCM模式串行I/O算法及NetC-DF数据结构特点,采用基于MPI-IO的高层I/O库对模式I/O算法进行并行优化,优化后可支持多类气象要素并行输出,输出效率明显提升。为我国应对气候变化数值模式的运行效率优化工作,进行了有益的技术探索和积累。
Abstract:
 Computational efficiency and I/O efficiency affect the efficiency of numerical climate model together in climate change numeri-cal simulation. Model computation section has been parallelized and the efficiency significantly increased. With the improvement of spatial and temporal resolution of numerical climate model,the demand of data access efficiency is also increased dramatically. The parallel I/O technology has become an effective method to improve the efficiency of numerical climate model. In this paper,analyze the serial I/O al-gorithm of BCC AGCM mode and the data structure features of NetCDF. Use high level I/O library based on MPI-IO to optimize model data interface,the new system can support parallel output of multiple meteorological elements and data output efficiency has improved sig-nificantly. Carry out useful technical exploration and accumulation for the efficiency optimization of numerical climate model.

相似文献/References:

[1]王勇超 张璟 王新卫 马静.基于MPICH2的高性能计算集群系统研究[J].计算机技术与发展,2008,(09):101.
 WANG Yong-chao,ZHANG Jing,WANG Xin-wei,et al.Research of High Performance Cluster System Based on MPICH2[J].,2008,(12):101.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(12):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(12):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(12):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(12):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(12):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(12):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(12):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(12):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(12):43.
[11]赵颖辉[][],蒋从锋[][]. 遥感影像的高性能并行处理技术研究[J].计算机技术与发展,2014,24(07):201.
 ZHAO Ying-hui[][],JIANG Cong-feng[][]. Research on High Performance Parallel Processing Technology for Remote Sensing Images[J].,2014,24(12):201.

更新日期/Last Update: 2015-04-15