[1]谭莹,张然,朱东生. 社区发现在复杂网络划分中的应用[J].计算机技术与发展,2014,24(11):234-237.
 TAN Ying,ZHANG Ran,ZHU Dong-sheng. Application of Community Discovery in Complex Network Division[J].,2014,24(11):234-237.
点击复制

 社区发现在复杂网络划分中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年11期
页码:
234-237
栏目:
应用开发研究
出版日期:
2014-11-10

文章信息/Info

Title:
 Application of Community Discovery in Complex Network Division
文章编号:
1673-629X(2014)11-0234-04
作者:
 谭莹张然朱东生
 长沙理工大学 计算机与通信工程学院
Author(s):
 TAN Ying ZHANG Ran ZHU Dong-sheng
关键词:
 网络划分无标度网络社区结构多层网络划分
Keywords:
 network segmentationscale-free networkcommunity structuremulti-layer network division
分类号:
TP39
文献标志码:
A
摘要:
 在无标度网络中,社区结构是普遍存在的一种网络结构特性,社区结构是网络中间层的描述,是对网络的自然压缩。文中基于这一事实,将社区结构发现方法加入到多层网络划分框架中,提出了基于社区结构的多层网络划分改进策略。该方法首先对无标度网络进行社区发现;然后以发现的社区结构为单位,对原网络进行压缩;之后对压缩后的网络进行初始划分;最后将划分结果还原为对原网络的划分。在进行初始划分时,为获得较好的划分效果,引入了0-1规划方法,并使用K-L算法进行优化。通过对比实验,结果表明把社区结构引入多层网络划分方法中,可以获得更好的划分。
Abstract:
In the scale-free network,the community structure is ubiquitous structural properties of a network,community structure is the description of network middle layer,which is a natural compression for network Based on this fact,the community structure discovery methods are added into multi-layer network framework,propose an improved multi-layer network division strategy based on community structure. This method first carries out the community discovery for scale-free networks,then with the discovered community structure as a unit,conduct the original network compression,later divide the network compressed initially,finally the result will be reverted to the o-riginal network division. During initial division,in order to get a better division results,introduce the 0-1 programming methods and algo-rithms and optimized by the use of K-L. By comparing the experiment,the results show that introduction of community structures into multi-layer network division method,can get a better division.

相似文献/References:

[1]卢照 师军 于海蛟 方昕.城市路网的最短路径并行求解[J].计算机技术与发展,2010,(01):78.
 LU Zhao,SHI Jun,YU Hai-jiao,et al.Solving the Shortest Path in Parallel of City Road Network[J].,2010,(11):78.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.

更新日期/Last Update: 2015-04-14