[1]朱俊华,谷鹏,潘海琦,等. 量化压缩感知在语音压缩编码中的应用[J].计算机技术与发展,2014,24(11):155-158.
 ZHU Jun-hua,GU Peng,PAN Hai-qi,et al. Application of Quantized Compressed Sensing in Speech Compression Encoding[J].,2014,24(11):155-158.
点击复制

 量化压缩感知在语音压缩编码中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年11期
页码:
155-158
栏目:
智能、算法、系统工程
出版日期:
2014-11-10

文章信息/Info

Title:
 Application of Quantized Compressed Sensing in Speech Compression Encoding
文章编号:
1673-629X(2014)11-0155-04
作者:
 朱俊华谷鹏潘海琦丁飞
 南京邮电大学 宽带无线通信与传感网技术教育部重点实验室
Author(s):
 ZHU Jun-huaGU Peng PAN Hai-qi DING Fei
关键词:
 离散余弦变换量化压缩感知Lloyd-Max量化量化迭代硬阈值算法
Keywords:
 discrete cosine transformquantized compressed sensingLloyd-Max quantizationquantized iterative hard thresholding
分类号:
TP31
文献标志码:
A
摘要:
 利用语音信号在离散余弦变换( DCT)域的近似稀疏性和量化压缩感知理论,文中提出一种基于量化压缩感知的语音压缩编码方案。编码端利用压缩感知技术,将语音信号投影成数据量大大减少的观测序列,然后对观测序列采用Lloyd-Max量化得到量化后的观测样值;解码端直接利用量化后的观测样值,结合重构算法重构出原始语音信号的DCT系数,经过DCT反变换得到重构后的语音信号,并采用后置低通滤波器改善重构语音的听觉效果。该编码方案解码端不需要进行反量化,而是直接利用量化后的观测样值进行重构,有效降低了解码端的运算量及复杂度。仿真结果表明:采用量化迭代硬阈值(QIHT)算法重构效果优于迭代硬阈值算法(IHT),重构语音的信噪比能达到20 dB以上,MOS分达到3.26。
Abstract:
 Utilizing the sparsity of Discrete Cosine Transform ( DCT) coefficients of speech signal and the theory of quantized compressed sensing,a novel speech coding scheme based on Quantized Compressed Sensing ( QCS) is proposed in this paper. Based on CS theory, the speech signal is transformed into measurement sequence at encoder side,by which the size of the data set is significantly reduced. Af-ter quantizing the measurement sequence by Lloyd-Max scheme,the sample value of measurement is gained. At decoder side,together with reconstruction algorithm,the DCT coefficients can be reconstructed by the measurements. The speech signal can be reconstructed af-ter DCT inverse transform. The quality of reconstructed speech signal can be improved by post low-pass filter. The speech signal can be directly reconstructed by the quantized measurements without inverse quantization,leading to the reduction of computation and complexity in decoder site. The simulation results show that the performance of Quantized Iterative Hard Thresholding ( QIHT) algorithm is superior to that of Iterative Hard Thresholding ( IHT) algorithm. The Signal-to-Noise Ratio ( SNR) of the reconstructed speech signal is about 20 dB while mean opinion score (MOS) is up to 3. 26.

相似文献/References:

[1]吴柯.图像版权保护与认证的双水印算法[J].计算机技术与发展,2009,(09):136.
 WU Ke.Dual Watermarking Algorithm of Image Copyright Protection and Authentication[J].,2009,(11):136.
[2]张伟 陈新龙 詹斌.基于DCT的图像水印算法研究与实现[J].计算机技术与发展,2009,(09):157.
 ZHANG Wei,CHEN Xin-long,ZHAN Bin.Research and Implementation of Blind Watermarking Algorithm of Images Based on DCT[J].,2009,(11):157.
[3]鞠汶奇 肖创柏 邬鹏.基于超长指令字的定点DCT算法研究[J].计算机技术与发展,2008,(01):101.
 JU Wen-qi,XIAO Chuang-bai,WU Peng.Research of Fixed - Point DCT Algorithm Based on VLIW Architecture[J].,2008,(11):101.
[4]武杰 陶亮 王华彬 姜雪.基于DST的实值离散Gabor变换[J].计算机技术与发展,2008,(05):118.
 WU Jie,TAO Liang,WANG Hua-bin,et al.DST- Based Real- Valued Discrete Gabor Transform[J].,2008,(11):118.
[5]罗开仲 黄士坦 杨华民.DCT算法及其与小波编码在图像处理中的比较[J].计算机技术与发展,2006,(09):79.
 LUO Kai-zhong,HUANG Shi-tan,YANG Hua-min.DCT Arithmetic and Its Comparison with Wavelet Transform Coding in Image Manipulation[J].,2006,(11):79.
[6]谢丁峰 夏新军.数字视频录像机的研究与设计[J].计算机技术与发展,2010,(09):246.
 XIE Ding-feng,XIA Xin-jun.Research and Design of Digital Video Record[J].,2010,(11):246.
[7]陆鹏 汤进 罗斌.基于Windows Mobile平台图像认证系统设计实现[J].计算机技术与发展,2010,(11):87.
 LU Peng,TANG Jin,LUO Bin.Image Authentication System Design and Implementation Based on Windows Mobile[J].,2010,(11):87.
[8]谢丁峰 夏新军.基于H.264的视频监控系统关键代码实现与优化[J].计算机技术与发展,2010,(12):57.
 XIE Ding-feng,XIA Xin-jun.Implementation and Optimization on Critical Code of H.264-Based Video Surveillance System[J].,2010,(11):57.
[9]杜肖山 廖述剑.一种DWT与DCT相结合的图像水印算法[J].计算机技术与发展,2011,(01):147.
 DU Xiao-shan,LIAO Shu-jian.A Novel Image Watermarking Algorithm Based on DWT and DCT[J].,2011,(11):147.
[10]马媛媛 杨峰 信科 焦方超.基于DCT的JPEG图像压缩的研究[J].计算机技术与发展,2011,(08):133.
 MA Yuan-yuan,YANG Feng,XIN Ke,et al.Research of JPEG Image Compression Based on DCT[J].,2011,(11):133.
[11]张爱华,常康康. 基于DCT快速变换的图像压缩编码算法[J].计算机技术与发展,2014,24(07):92.
 ZHANG Ai-hua,CHANG Kang-kang. A Fast Image Compression Coding Algorithm Based on DCT[J].,2014,24(11):92.
[12]汪琦,陶亮. 基于DCT的实值离散Gabor变换最优窗宽选择[J].计算机技术与发展,2014,24(10):55.
 WANG Qi,TAO Liang. Optimal Window Width Selection for Real-valued Discrete Gabor Transform Based on DCT[J].,2014,24(11):55.
[13]邹绍武[],苏贵斌[]. Android应用开发中图片压缩技术的研究应用[J].计算机技术与发展,2015,25(06):106.
 ZOU Shao-wu[],SU Gui-bin[]. Research and Application on Technology of Compressing Images in Android Development and Application[J].,2015,25(11):106.
[14]严珍珍,刘建军. 基于离散余弦变换的图像压缩编码方法及改进[J].计算机技术与发展,2016,26(01):147.
 YAN Zhen-zhen,LIU Jian-jun. Improved Image Compression Coding Method Based on Discrete Cosine Transform[J].,2016,26(11):147.
[15]高健,刘星星,杨珂. 自适应最小能量谐波相位偏转音频水印算法[J].计算机技术与发展,2016,26(05):110.
 GAO Jian,LIU Xing-xing,YANG Ke. An Adaptive Audio Watermarking Algorithm Based on Minimum Energy of Harmonic Phase Deflection[J].,2016,26(11):110.
[16]任荣梓,高航. 基于混沌置乱的分量融合图像加密压缩方法[J].计算机技术与发展,2017,27(08):106.
 REN Rong-zi,GAO Hang. An Image Encryption and Compression Method Based on Chaos Scrambling with Component Fusion[J].,2017,27(11):106.
[17]王树梅,张文斌. 一种基于伪随机的支持大尺寸图像水印算法[J].计算机技术与发展,2017,27(08):121.
 WANG Shu-mei,ZHANG Wen-bin. A Large-size Image Watermarking Algorithm with Pseudo-random[J].,2017,27(11):121.

更新日期/Last Update: 2015-04-14