[1]张哲,张化朋. 一种基于偏微分方程变分去噪模型[J].计算机技术与发展,2014,24(11):103-106.
 ZHANG Zhe,ZHANG Hua-peng. An Denoising Model of Variation Based on PDE[J].,2014,24(11):103-106.
点击复制

 一种基于偏微分方程变分去噪模型()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年11期
页码:
103-106
栏目:
智能、算法、系统工程
出版日期:
2014-11-10

文章信息/Info

Title:
 An Denoising Model of Variation Based on PDE
文章编号:
1673-629X(2014)11-0103-04
作者:
 张哲张化朋
 南京邮电大学 理学院
Author(s):
 ZHANG ZheZHANG Hua-peng
关键词:
 变分方法偏微分方程图像去噪泊松噪声四阶模型块效应
Keywords:
 variation approachPDEimage denoisingPoisson noisefourth-order modeblock effect
分类号:
TP31
文献标志码:
A
摘要:
 近年来,国内外学者对于泊松噪声的研究越来越多,在TV模型的基础上提出了不少二阶去噪模型,它们在有效去除噪声的同时,很好地保护了图像边缘细节,但是共同的缺点是产生了“块效应”。针对这一不足,文中提出了一种四阶去噪模型,运用变分原理得到了其相应的欧拉拉格朗日方程,并用梯度下降法求解拉格朗日方程。文中运用差分法对该模型进行了数值求解与仿真,实验结果表明,提出的方法不仅去噪效果良好,而且有效改善了二阶去噪模型中出现的“块效应”,同时有效保护了边缘细节。
Abstract:
 In recent years,there are more and more studies on Poisson noise by domestic and foreign scholars,they have proposed several second-order derivative denoising models based on TV model,which are able to remove the noise effectively,and at the same time,pro-tect the image edge detail well,but have a common drawback called"block effect". In response to this deficiency,propose a fourth-order denoising model in this paper,and use the variational principle to get its corresponding Euler Lagrange equation and apply the gradient de-scent method to solve the equation. In this paper,use the differentiated method for numerical solution of the model and simulation,the re-sults show that the proposed method not only removes the noise effectively,but also improve the block effect while protecting the edge detail.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(11):47.
[11]孙向荣,刘芳芳. 图像修复TV模型的快速算法研究[J].计算机技术与发展,2014,24(11):144.
 SUN Xiang-rong,LIU Fang-fang. Research on Fast Algorithm of Image Inpainting Total Variational Model[J].,2014,24(11):144.

更新日期/Last Update: 2015-04-13