[1]代永强,王联国,郭小燕. 文化蛙跳算法性能分析研究[J].计算机技术与发展,2014,24(11):87-90.
 DAI Yong-qiang,WANG Lian-guo,GUO Xiao-yan. Performance Analysis Research on Cultural and Shuffled Frog Leaping Algorithm[J].,2014,24(11):87-90.
点击复制

 文化蛙跳算法性能分析研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年11期
页码:
87-90
栏目:
智能、算法、系统工程
出版日期:
2014-11-10

文章信息/Info

Title:
 Performance Analysis Research on Cultural and Shuffled Frog Leaping Algorithm
文章编号:
1673-629X(2014)11-0087-04
作者:
 代永强;王联国;郭小燕
 甘肃农业大学 信息科学技术学院
Author(s):
 DAI Yong-qiang;WANG Lian-guo;GUO Xiao-yan
关键词:
 文化蛙跳算法遗传操作多样性优化性能
Keywords:
 CA-SFLA genetic operationdiversity optimization performance
分类号:
TP301.6
文献标志码:
A
摘要:
 基本混合蛙跳算法收敛速度较慢,优化精度较低。为进一步提高混合蛙跳算法的优化速度和精度,将文化算法模型引入到混合蛙跳算法中,提出了一种文化蛙跳算法。利用混合蛙跳算法良好的全局协同搜索能力和文化算法模型中的遗传操作,提高了算法的收敛精度,增强了算法的群体多样性。通过对3个测试函数进行优化实验,并与文中文化蛙跳算法和相关文献中的改进算法进行比较,实验结果表明文中提出的改进文化蛙跳算法具有更好的优化性能。
Abstract:
 The Shuffled Frog Leaping Algorithm ( SFLA) has slow convergence speed and low optimization precision. In order to further improve the optimization speed and precision of the SFLA,the improved Cultural And Shuffled Frog Leaping Algorithm ( CA-SFLA) is proposed,through introducing the cultural algorithm model into shuffled frog leaping algorithm. The new convergence precision is im-proved and the population diversity is enhanced,by using the outstanding global cooperative search ability of the shuffled frog leaping al-gorithm and the genetic operation of culture algorithm model. Through testing three benchmark functions,and compared with basic CA-SFLA and the improved CA-SFLA in related references,the results show that CA-SFLA proposed has better performance.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(11):47.

更新日期/Last Update: 2015-04-13