[1]王凤娇,陈光化,周文. 基于SIFT的POCS图像超分辨率重建[J].计算机技术与发展,2014,24(11):39-42.
 WANG Feng-jiao,CHEN Guang-hua,ZHOU Wen. Multi-frame Image Super-resolution Reconstruction Based on SIFT[J].,2014,24(11):39-42.
点击复制

 基于SIFT的POCS图像超分辨率重建()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年11期
页码:
39-42
栏目:
智能、算法、系统工程
出版日期:
2014-11-10

文章信息/Info

Title:
 Multi-frame Image Super-resolution Reconstruction Based on SIFT
文章编号:
1673-629X(2014)11-0039-04
作者:
 王凤娇陈光化周文
 上海大学 机电工程与自动化学院
Author(s):
 WANG Feng-jiaoCHEN Guang-huaZHOU Wen
关键词:
 超分辨率凸集投影尺度不变特征转换图像配准仿射变换
Keywords:
 super-resolutionPOCSSIFTimage registrationaffine transformation
分类号:
TP31
文献标志码:
A
摘要:
 针对传统的POCS图像超分辨率重建算法中广泛使用的基于改进的Keren配准算法,对于序列帧间存在剪切和非均匀尺度变换现象时,很难做到精确的亚像素级配准,文中讨论了一种基于SIFT算法的POCS序列图像超分辨率重建算法。首先利用SIFT算法提取序列帧与参考帧间的SIFT关键点对,随后选取匹配关键点对,通过RANSAC去除误配点的同时估算出六参数仿射变换参数,最后使用POCS重建算法得到最终的重建结果。实验结果表明:该方法能有效地解决因运动估计不准而引起的重建图像效果不好的问题,特别是在序列帧间存在剪切和非均匀尺度变换现象时,重建效果明显好于传统的POCS算法,具有更强适应性。
Abstract:
 On account of improved Keren registration algorithm used widely in traditional POCS image super-resolution reconstruction is difficult to achieve registration of sub-pixel accuracy for the situation where exists shear and non-uniform scale transformation between image sequence,a multi-frame image super-resolution reconstruction method is discussed in this paper based on SIFT algorithm. Firstly, SIFT keypoint pairs between current frame and reference frame are extracted by using SIFT algorithm. Then the parameters of six-param-eter affine transformation are calculated through RANSAC. Lastly,the reconstruction image can be gained by utilizing POCS super-reso-lution reconstruction method. Experimental results show that the method considered in this paper can solve reconstruction problem which results from inaccurate sub-pixel image registration and has better adaptability,especially in the case where exists shear and non-uniform scale transformation between image sequence,and the reconstruction effect is better than traditional POCS algorithm.

相似文献/References:

[1]李磊 周鸣争.基于MAP技术的图像类推超分辨重建方法[J].计算机技术与发展,2009,(01):77.
 LI Lei,ZHOU Ming-zheng.MAP - Based Image - Analogies Super - Resolution Reconstruction[J].,2009,(11):77.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[11]佳伟[],徐煜明[][],肖贤建[]. 基于小波变换和迭代反向投影的超分辨率算法[J].计算机技术与发展,2015,25(02):74.
 SONG Jia-wei[],XU Yu-ming[][],XIAO Xian-jian[]. A Super Resolution Algorithm Based on Wavelet Transform and Iterative Back Projection[J].,2015,25(11):74.
[12]李欣,崔子冠,陈杰,等. 基于局部回归和自相似性的图像超分辨率重建[J].计算机技术与发展,2016,26(10):17.
 LI Xin,CUI Zi-guan,CHEN Jie,et al. Image Super-resolution Reconstruction Based on Local Regression and Self-similarity[J].,2016,26(11):17.
[13]尧潞阳,解凯,李桐. 基于块旋转和清晰度的图像超分辨率重建算法[J].计算机技术与发展,2017,27(01):70.
 YAO Lu-yang,XIE Kai,LI Tong. An Image Super Resolution Reconstruction Algorithm Based on Patch Rotation and Sharpness[J].,2017,27(11):70.

更新日期/Last Update: 2015-04-03