[1]王职军[],梁光明[],刘任任[],等. 共生矩阵纹理特征的DSP优化实现[J].计算机技术与发展,2014,24(11):13-16.
 WANG Zhi-jun[],LIANG Guang-ming[],LIU Ren-ren[],et al. DSP Optimized Implementation of Co-occurrence Matrix Texture Feature[J].,2014,24(11):13-16.
点击复制

 共生矩阵纹理特征的DSP优化实现()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年11期
页码:
13-16
栏目:
智能、算法、系统工程
出版日期:
2014-11-10

文章信息/Info

Title:
 DSP Optimized Implementation of Co-occurrence Matrix Texture Feature
文章编号:
1673-629X(2014)11-0013-04
作者:
 王职军[1] 梁光明[2] 刘任任[1] 徐克强[1] 谢俊[1]
1.湘潭大学 信息工程学院,湖南;2.国防科技大学 电子科学与工程学院
Author(s):
 WANG Zhi-jun[1] LIANG Guang-ming[2] LIU Ren-ren[1] XU Ke-qiang[1] XIE Jun[1]
关键词:
 共生矩阵纹理特征TMS320C6678 优化
Keywords:
 co-occurrence matricestexture featuresTMS320C6678optimization
分类号:
TP391
文献标志码:
A
摘要:
 灰度共生矩阵纹理特征具有计算复杂、耗费时间等问题,严重影响了程序执行的效率。针对此问题,分析了共生矩阵纹理特征的原理,研究了TMS320C6678 DSP的结构性能,提出了基于共生矩阵纹理特征的存取带宽和软件流水的优化方法,在CCS5.3软件平台下选择TMS320C6678对其进行了程序实现,最后使程序执行时间从1.94 ms减少到0.259 ms。实验结果表明,提出的优化方法能够缩减代码执行时间,提升代码性能,满足嵌入式图像处理系统的实际需要。
Abstract:
 Texture features based on Gray Level Co-occurrence Matrix ( GLCM) has the drawbacks of complex calculations and time-consuming,which seriously affects the efficiency of program execution. Aiming at this problem,analyze the principle of the extracted tex-ture features based on GLCM in this paper,study on the performance of the TMS320C6678 DSP,propose the optimization method of ac-cess bandwidth and software pipelining based on GLCM texture feature,then achieve the optimization of GLCM-based texture features by using of TMS320C6678 in the CCS5. 3 software platform,so that the program execution time is reduced from 1. 94 ms to 0. 259 ms. Ex-periment results show that the proposed optimization method can shrink code execution time, improve code performance and meet the needs of embedded image processing system.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(11):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(11):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(11):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(11):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(11):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(11):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(11):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(11):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(11):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(11):47.

更新日期/Last Update: 2015-04-03