[1]朱俚治. 一种基于BP神经网络的智能检测病毒方法[J].计算机技术与发展,2014,24(10):163-166.
 ZHU Li-zhi. An Intelligent Virus Detection Method Based on BP Neural Network[J].,2014,24(10):163-166.
点击复制

 一种基于BP神经网络的智能检测病毒方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年10期
页码:
163-166
栏目:
安全与防范
出版日期:
2014-10-10

文章信息/Info

Title:
 An Intelligent Virus Detection Method Based on BP Neural Network
文章编号:
1673-629X(2014)10-0163-04
作者:
 朱俚治
 南京航空航天大学 信息中心
Author(s):
 ZHU Li-zhi
关键词:
 病毒BP神经网络沙箱
Keywords:
 virusBP neural networksandbox
分类号:
TP301
文献标志码:
A
摘要:
 病毒技术历经半个世纪的发展,如今已不是单纯的病毒技术,而是融合了其他黑客等技术,因此当今病毒的危害性和传播速度远远超过了病毒原始形态。病毒的传染性以及病毒的变种技术在病毒上的应用使得病毒呈现一定的智能性。因此,为了应对病毒的变种技术以及病毒其他方面所呈现出的智能性,文中参考已有的检测病毒方法之后,提出了一种具有智能性的检测病毒的方法。文中使用沙箱作为检测病毒的运行环境,并使用BP神经网络作为检测病毒的工具,然后给出了一种具有一定智能性的病毒检测方法。该方法能够对被怀疑的非法变化的程序中是否存在病毒做出判断。
Abstract:
 After several decades of development,the virus technology today is not merely the simple virus technology,but having com-bined with other technologies such as hacking and so on. So the hazard and transmission speed of virus today is over the original virus. The contagiousness of the virus and virus variant technology applied in virus has made them show certain intelligence. In order to deal with the intelligence viruses present,put forward an intelligent virus detection method after referring to existing methods. While using the sandbox as the operating environment of virus detection,also use the BP neural network as the tools. Afterwards,a new method of virus detection is given,which will be able to help to detect whether the suspected program exists viruses.

相似文献/References:

[1]朱俚治.病毒检测技术的研究与0.5级环[J].计算机技术与发展,2012,(09):225.
 ZHU Li-zhi.Research on Detecting Virus and 0.5 Level Ring[J].,2012,(10):225.
[2]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(10):1.
[3]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(10):5.
[4]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(10):13.
[5]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(10):21.
[6]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(10):25.
[7]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(10):29.
[8]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(10):34.
[9]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(10):38.
[10]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(10):43.
[11]朱俚治. 一种基于文件型病毒的粒子群检测方法[J].计算机技术与发展,2014,24(12):128.
 ZHU Li-zhi. A Detection Method for Particle Swarm Based on File Type Virus[J].,2014,24(10):128.

更新日期/Last Update: 2015-04-03