[1]段艳明. 基于PSO算法和BP神经网络的PID控制研究[J].计算机技术与发展,2014,24(08):238-241.
 DUAN Yan-ming. Research of PID Control Based on BP Neural Network and PSO Algorithm[J].,2014,24(08):238-241.
点击复制

 基于PSO算法和BP神经网络的PID控制研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年08期
页码:
238-241
栏目:
应用开发研究
出版日期:
2014-08-10

文章信息/Info

Title:
 Research of PID Control Based on BP Neural Network and PSO Algorithm
文章编号:
1673-629X(2014)08-0238-04
作者:
 段艳明
 河池学院 计算机与信息工程学院
Author(s):
 DUAN Yan-ming
关键词:
 PID控制BP神经网络PSO算法
Keywords:
 PID controlBP neural networkPSO algorithm
分类号:
TP391.9
文献标志码:
A
摘要:
 针对PID控制中的参数整定的难点及基本BP算法收敛速度慢、易陷入局部极值的问题,提出利用PSO算法的全局寻优能力和较强的收敛性来改进BP网络的权值调整新方法,从而对PID控制的比例、积分、微分进行优化控制。该方法是在基本BP算法的误差反向传播的基础上,使粒子位置的更新对应BP网络的权值和阈值的调整,既充分利用了PSO算法的全局寻优性又较好地保持了BP算法本身的反向传播特点。仿真结果表明基于PSO算法的BP神经网络的PID优化控制具有较好的性能和自学习、自适应性。
Abstract:
 In view of the difficulty of parameters setting of PID control and the limitations of slow convergence and local extreme values of BP algorithm,a new method to adjust weights of BP network is proposed using the global optimization ability and the strong conver-gence by PSO algorithm,so as to optimize the proportional,integral and differential of PID control. The new algorithm is based on the weight adjustments of error back propagation of BP algorithm,making the bats position updating to weight and threshold of BP network modification. The new algorithm can not only use the global optimization of PSO algorithm,but also contain the feature of error back propagation of BP algorithm. Experimental results show that the PID optimization control based on BP neural network has better perform-ance and self learning and adaptive.

相似文献/References:

[1]洪素惠 吴发成 米红.神经网络自适应PID在吹瓶机中的应用[J].计算机技术与发展,2009,(09):177.
 HONG Su-hui,WU Fa-cheng,MI Hong.Adaptive PID Controller Based on Neural Networks in Stretch Blow Molding[J].,2009,(08):177.
[2]魏华 李群 陈得宝.一种新型参数非线性模糊PID控制方法[J].计算机技术与发展,2008,(02):237.
 WEI Hua,LI Qun,CHEN De-bao.A New Designing Method of PID Control with Nonlinear Fuzzy Parameter[J].,2008,(08):237.
[3]张昊 陈自力 齐晓慧.基于RBF神经网络PID的无人动力伞控制[J].计算机技术与发展,2012,(02):206.
 ZHANG Hao,CHEN Zi-li,QI Xiao-hui.Unmanned Powered Parachute Aircraft Control Based on RBF Neural Network PID[J].,2012,(08):206.
[4]周西峰,林莹莹,郭前岗.基于粒子群算法的PID神经网络解耦控制[J].计算机技术与发展,2013,(09):158.
 ZHOU Xi-feng,LIN Ying-ying,GUO Qian-gang.PID Neural Network Decoupling Control Based on Particle Swarm Optimization[J].,2013,(08):158.
[5]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[6]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[7]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[8]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[9]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[10]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.

更新日期/Last Update: 2015-03-31