[1]李春生[],苏晓伟[],魏军[],等. 基于支持向量机的抽油机井功图识别研究[J].计算机技术与发展,2014,24(08):215-218.
 LI Chun-sheng[],SU Xiao-wei[],WEI Jun[],et al. Research on Diagrams Identification of Pumping Unit Based on Support Vector Machine[J].,2014,24(08):215-218.
点击复制

 基于支持向量机的抽油机井功图识别研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年08期
页码:
215-218
栏目:
应用开发研究
出版日期:
2014-08-10

文章信息/Info

Title:
 Research on Diagrams Identification of Pumping Unit Based on Support Vector Machine
文章编号:
1673-629X(2014)08-0215-04
作者:
 李春生[1]苏晓伟[1]魏军[2]王丽丽[2]
 1.东北石油大学 计算机与信息技术学院;2.克拉玛依职业技术学院 信息工程系
Author(s):
 LI Chun-sheng[1]SU Xiao-wei[1]WEI Jun[2]WANG Li-li[2]
关键词:
 示功图支持向量机特征提取分类识别
Keywords:
 indicator diagramsupport vector machinefeature extractionclassificationidentification
分类号:
TP311
文献标志码:
A
摘要:
 抽油机的异常情况会使油田的产油效率降低,而不同的异常类型对应的抽油机示功图特征也各不相同,因此造成的损害程度也不同。针对以上问题,文中提出了一种抽油机井功图识别模型,该方法将支持向量机( SVM)用于抽油机井功图识别。首先利用改进的矢量曲线数据压缩方法(ICVDC)对抽油机井下示功图进行特征数据提取,在此基础上,采用“一对一”分类法建立基于支持向量机的井下示功图分类模型,进而对不同特征的示功图进行分类识别,并与其他识别分类模型进行了识别分类效果对比。实验结果表明,该方法分类准确度高,有效地解决了示功图的识别和分类问题,方便对油井设备等进行进一步的故障分析处理,从而大大提高抽油机的性能与效率,以此来达到油田提高采收率的目的。
Abstract:
 The pumping unit anomalies will reduce oil production efficiency,while the different abnormal types corresponding to the char-acteristics of oil pumping machine indicator diagram also are not identical,so the damage degree is different. For above problem,put for-ward a well pumping unit work diagram recognition model,the method uses Support Vector Machine ( SVM) for pumping unit well fig-ure identification. First use the Improved Curve of Vector Data Compression ( ICVDC) method to extract characteristics of the data of pumping unit downhole indicator diagram,on this basis,using the “one-against-one” classification to establish the downhole indicator diagram classification model based on SVM,with different features to identify the classification of the indicator diagram,and compare with other recognition classification model in classification effect. The experimental results show that,the method for the classification has high accuracy,effectively solving the problem of identification and diagnosis of the diagram,which is convenient for further analyzing and handling the fault of oil well equipment,thus greatly improving the performance and efficiency of the pumping unit,in order to achieve the purpose of oil field recovery improved.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(08):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(08):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(08):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(08):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(08):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(08):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(08):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(08):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(08):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(08):47.
[11]肖维民,葛艺晓. 基于Freeman链码特征值的示功图分类识别研究[J].计算机技术与发展,2015,25(02):25.
 XIAO Wei-min,GE Yi-xiao. Research on Classification and Identification of Indicator Diagram Based on Freeman Chain-code Eigenvalues[J].,2015,25(08):25.

更新日期/Last Update: 2015-03-31