[1]魏华珍[],戴安娜[],赵姝[][]. 基于领域覆盖算法的音乐情感识别[J].计算机技术与发展,2014,24(07):72-76.
 WEI Hua-zhen[],DAI An-na[],ZHAO Shu[][]. Music Emotion Recognition Based on Neighborhood Covering Algorithm[J].,2014,24(07):72-76.
点击复制

 基于领域覆盖算法的音乐情感识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年07期
页码:
72-76
栏目:
智能、算法、系统工程
出版日期:
2014-07-10

文章信息/Info

Title:
 Music Emotion Recognition Based on Neighborhood Covering Algorithm
文章编号:
1673-629X(2014)07-0072-05
作者:
 魏华珍[1]戴安娜[1]赵姝[1][2]
 1.安徽大学 计算机科学与技术学院;安徽大学 智能计算与信号处理教育部重点实验室
Author(s):
 WEI Hua-zhen[1]DAI An-na[1]ZHAO Shu[1][2]
关键词:
 领域覆盖算法音乐情感识别音乐特征提取情感分类
Keywords:
 neighborhood coverage algorithmmusic emotion recognitionmusic featureextractionemotion classification
分类号:
TP181
文献标志码:
A
摘要:
 音乐中具备很多情感的信息。文中通过分析音乐特征并用领域覆盖算法对音乐情感分类进行研究。音乐情感分类主要包括两个阶段:特征提取和分类。首先,通过Matlab语言提取音乐的特征,将提取到的特征值构建训练样本,然后使用训练样本训练领域覆盖算法分类器,得到音乐情感分类器,从而实现音乐的情感自动分类。文中借鉴Weiner、Graham的情感分类方法,将音乐分为开心和悲伤两类,并尝试用多种不同的音乐特征组合训练领域覆盖分类器,分析基于领域覆盖算法的音乐情感识别效果。
Abstract:
 Music is strongly associated with emotions. In this paper,neighborhood covering algorithm is used to analyze musical genre so that music can be classified into different categories. Musical genre classification task falls into two major stages:feature extraction and classification. First of all,Matlab is used to extract the characteristics of the music,the characteristic values are applied to construct the training sample,then adopt the training sample to train the neighborhood covering algorithm classifier,obtaining the music emotion classi-fier and realizing the emotional automatic classification of music. According to emotion classification method of Weiner and Graham,di-vide the Chinese popular music into two categories:happy and sad,then try to use different music feature combinations to train neighbor-hood covering algorithm classifier as a method for music emotion recognition.

相似文献/References:

[1]张志宏,吴庆波,邵立松,等.基于飞腾平台TOE协议栈的设计与实现[J].计算机技术与发展,2014,24(07):1.
 ZHANG Zhi-hong,WU Qing-bo,SHAO Li-song,et al. Design and Implementation of TCP/IP Offload Engine Protocol Stack Based on FT Platform[J].,2014,24(07):1.
[2]梁文快,李毅. 改进的基因表达算法对航班优化排序问题研究[J].计算机技术与发展,2014,24(07):5.
 LIANG Wen-kuai,LI Yi. Research on Optimization of Flight Scheduling Problem Based on Improved Gene Expression Algorithm[J].,2014,24(07):5.
[3]黄静,王枫,谢志新,等. EAST文档管理系统的设计与实现[J].计算机技术与发展,2014,24(07):13.
 HUANG Jing,WANG Feng,XIE Zhi-xin,et al. Design and Implementation of EAST Document Management System[J].,2014,24(07):13.
[4]侯善江[],张代远[][][]. 基于样条权函数神经网络P2P流量识别方法[J].计算机技术与发展,2014,24(07):21.
 HOU Shan-jiang[],ZHANG Dai-yuan[][][]. P2P Traffic Identification Based on Spline Weight Function Neural Network[J].,2014,24(07):21.
[5]李璨,耿国华,李康,等. 一种基于三维模型的文物碎片线图生成方法[J].计算机技术与发展,2014,24(07):25.
 LI Can,GENG Guo-hua,LI Kang,et al. A Method of Obtaining Cultural Debris’ s Line Chart Based on Three-dimensional Model[J].,2014,24(07):25.
[6]翁鹤,皮德常. 混沌RBF神经网络异常检测算法[J].计算机技术与发展,2014,24(07):29.
 WENG He,PI De-chang. Chaotic RBF Neural Network Anomaly Detection Algorithm[J].,2014,24(07):29.
[7]刘茜[],荆晓远[],李文倩[],等. 基于流形学习的正交稀疏保留投影[J].计算机技术与发展,2014,24(07):34.
 LIU Qian[],JING Xiao-yuan[,LI Wen-qian[],et al. Orthogonal Sparsity Preserving Projections Based on Manifold Learning[J].,2014,24(07):34.
[8]尚福华,李想,巩淼. 基于模糊框架-产生式知识表示及推理研究[J].计算机技术与发展,2014,24(07):38.
 SHANG Fu-hua,LI Xiang,GONG Miao. Research on Knowledge Representation and Inference Based on Fuzzy Framework-production[J].,2014,24(07):38.
[9]叶偲,李良福,肖樟树. 一种去除运动目标重影的图像镶嵌方法研究[J].计算机技术与发展,2014,24(07):43.
 YE Si,LI Liang-fu,XIAO Zhang-shu. Research of an Image Mosaic Method for Removing Ghost of Moving Targets[J].,2014,24(07):43.
[10]余松平[][],蔡志平[],吴建进[],等. GSM-R信令监测选择录音系统设计与实现[J].计算机技术与发展,2014,24(07):47.
 YU Song-ping[][],CAI Zhi-ping[] WU Jian-jin[],GU Feng-zhi[]. Design and Implementation of an Optional Voice Recording System Based on GSM-R Signaling Monitoring[J].,2014,24(07):47.

更新日期/Last Update: 2015-03-13