[1]张浩,张代远.基于三次样条权函数神经网络的股价预测[J].计算机技术与发展,2014,24(06):28-31.
 ZHANG Hao[],ZHANG Dai-yuan[].Stock Prediction Based on Neural Networks with Cubic Spline Weight Functions[J].,2014,24(06):28-31.
点击复制

基于三次样条权函数神经网络的股价预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年06期
页码:
28-31
栏目:
智能、算法、系统工程
出版日期:
2014-06-30

文章信息/Info

Title:
Stock Prediction Based on Neural Networks with Cubic Spline Weight Functions
文章编号:
1673-629X(2014)06-0028-04
作者:
张浩1张代远2
1.南京邮电大学 计算机学院;2.江苏省无线传感网高技术研究重点实验室;3.南京邮电大学 计算机技术研究所
Author(s):
ZHANG Hao[1]ZHANG Dai-yuan[2]
关键词:
权函数三次样条函数BP算法神经网络股价预测
Keywords:
weight functioncubic spline functionBP algorithneural networksstock price prediction
分类号:
TP31
文献标志码:
A
摘要:
随着经济的发展,股票投资已成为很多人的一种投资理财方式,而股票价格的预测也成为投资者关心和研究的焦点。建立一个运算速度和精确度都比较高的股价预测模型,对于金融投资者具有理论指导意义和实际应用价值。文中针对传统BP算法存在的学习速度慢、容易陷入局部极小值、隐层数不易确定等问题,使用三次样条权函数神经网络建立股价预测模型,克服了传统神经网络的缺点。仿真结果表明,该模型具有较高的预测精度,能够对股市进行有效的预测。
Abstract:
With economic development,stocks have become a way of finance and investment for many people,and the stock price forecas-ting has become the focus of investors' attention and study. Establishing a stock price forecasting model with high computing speed and accuracy has theoretical and practical significance for financial investors. As the traditional BP algorithm has problems such as low learn-ing speed,easy to fall into local minimum value,difficult to determine the number of hidden layer neurons,the stock prediction model is established using the neural networks with cubic spline weight functions to overcome the shortcomings of traditional neural networks. The simulation results show that the model has high accuracy and can effectively predict the stock market.

相似文献/References:

[1]张代远.新型样条权函数神经网络的云计算研究[J].计算机技术与发展,2013,(07):57.
 ZHANG Dai-yuan.Research on Cloud Computing for Neural Network of a New Kind of Spline Weight Functions[J].,2013,(06):57.

更新日期/Last Update: 1900-01-01