[1]郭庆春,郝源,李雪[],等.BP神经网络在长江水质COD预测中的应用[J].计算机技术与发展,2014,24(04):235-238.
 GUO Qing-chun[],HAO Yuan[],LI Xue[],et al.Application of BP Neural Network in Predicting COD of Yangtze River[J].,2014,24(04):235-238.
点击复制

BP神经网络在长江水质COD预测中的应用()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年04期
页码:
235-238
栏目:
应用开发研究
出版日期:
2014-04-30

文章信息/Info

Title:
Application of BP Neural Network in Predicting COD of Yangtze River
文章编号:
1673-629X(2014)04-0235-04
作者:
郭庆春1郝源2李雪[3]杜北方2张向阳2
1.陕西广播电视大学;2.中国科学院 地球环境研究所黄土与第四纪国家重点实验室;3.中国科学院大学,
Author(s):
GUO Qing-chun[1]HAO Yuan[2]LI Xue[3]DU Bei-fang[2]ZHANG Xiang-yang[2]
关键词:
神经网络水质化学需氧量溶解氧氨氮
Keywords:
neural networkwater qualityCODDONH3-N
分类号:
X522
文献标志码:
A
摘要:
水质变化具有非线性、突变性,且含有噪声,传统线性预测模型不能全面反映其变化规律,预测精度低,误差大。针对水质变化规律复杂,影响因素间非线性程度高的问题,为了提高水质预测精度,将改进算法的BP神经网络引入化学需氧量( COD)预测预报领域,以pH、溶解氧( DO)、氨氮( NH3-N)为输入向量,以COD为输出向量,建立了COD的预测模型并对效果进行检验。结果表明:检验样本中COD的预测值与实测值的线性相关系数为0.991。 BP神经网络模型预测精度高,收敛速度快,具有良好的泛化能力,能较好地反映COD和影响因子的变化规律。
Abstract:
Water quality change is of nonlinear and dynamicity,it is a kind of complex time series data,therefore,the traditional linear pre-diction model cannot reflect the variation rule,and the prediction accuracy is low. For the problems of complex water quality change rule and high degree of nonlinear between factors,in order to improve the water quality prediction accuracy,introduce the BP neural network of improved algorithm into a model of COD,with pH,DO,NH3-N as input and COD as output,the prediction model of COD is estab-lished and tested. The research results show the linear correlation coefficient of COD between forecasting and the monitoring in the test samples is 0. 991. BP neural network has high forecast precision,fast convergence rate and the good generalization ability,which can bet-ter reflect the change rule between COD and impact factors.

相似文献/References:

[1]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(04):84.
[2]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(04):148.
[3]包力伟 周俊.铸锻企业生产质量控制系统的开发[J].计算机技术与发展,2008,(04):174.
 BAO Li-wei,ZHOU Jun.Development of a Manufacture Quality Control System in Casting Company[J].,2008,(04):174.
[4]李志俊 程家兴 金奎 饶玉佳.基于样本期望训练数的BP神经网络改进研究[J].计算机技术与发展,2009,(05):103.
 LI Zhi-jun,CHENG Jia-xing,JIN Kui,et al.BP Algorithm Improvement Based on Sample Expected Training Number[J].,2009,(04):103.
[5]李龙澍 葛瑞峰 王慧萍.基于神经网络的批强化学习在Robocup中的应用[J].计算机技术与发展,2009,(07):98.
 LI Long-shu,GE Rui-feng,WANG Hui-ping.Application of Batch Reinforcement Learning Based on NN to Robocup[J].,2009,(04):98.
[6]贾志先.神经网络在空白试卷识别中的应用[J].计算机技术与发展,2009,(08):208.
 JIA Zhi-xian.Application of Neural Network in Recognization Blank Examination Paper[J].,2009,(04):208.
[7]肖宜龙 路游 亓永刚.基于神经网络的NURBS曲面重建[J].计算机技术与发展,2009,(09):65.
 XIAO Yi-long,LU You,QI Yong-gang.NURBS Surface Reconstruction Based on Neural Network[J].,2009,(04):65.
[8]蔡秋茹 罗烨 柳益君 叶飞跃.企业资信的BP神经网络评估模型研究[J].计算机技术与发展,2009,(10):117.
 CAI Qiu-ru,LUO Ye,LIU Yi-jun,et al.Research on BP Neural Network Model for Corporation Credit Rating[J].,2009,(04):117.
[9]王晓敏 刘希玉 戴芬.BP神经网络预测算法的改进及应用[J].计算机技术与发展,2009,(11):64.
 WANG Xiao-min,LIU Xi-yu,DAI Fen.Improvement and Application of BP Neural Network Forecasting Algorithm[J].,2009,(04):64.
[10]崔海青 刘希玉.基于粒子群算法的RBF网络参数优化算法[J].计算机技术与发展,2009,(12):117.
 CUI Hai-qing,LIU Xi-yu.Parameter Optimization Algorithm of RBF Neural Network Based on PSO Algorithm[J].,2009,(04):117.

更新日期/Last Update: 1900-01-01