[1]余桂兰,陈珂,左敬龙.基于云模型的并行蚁群-SVM分类方法[J].计算机技术与发展,2014,24(04):131-134.
 YU Gui-lan,CHEN Ke,ZUO Jing-long.Parallel Ant Colony-SVM Classification Method Based on Cloud Model[J].,2014,24(04):131-134.
点击复制

基于云模型的并行蚁群-SVM分类方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年04期
页码:
131-134
栏目:
智能、算法、系统工程
出版日期:
2014-04-30

文章信息/Info

Title:
Parallel Ant Colony-SVM Classification Method Based on Cloud Model
文章编号:
1673-629X(2014)04-0131-04
作者:
余桂兰陈珂左敬龙
广东石油化工学院 计算机与电子信息学院
Author(s):
YU Gui-lanCHEN KeZUO Jing-long
关键词:
云模型逆向云发生器并行蚁群算法支持向量机网页分类
Keywords:
cloud modelbackward cloud generatorparallel ant colony algorithmSVMweb page classification
分类号:
TP391
文献标志码:
A
摘要:
支持向量机( SVM)是一种高效的分类识别方法,在解决高维模式识别问题中表现出许多特有的优势,但SVM不利于海量数据的挖掘。为了改善SVM对大样本数据的适应性,提高算法的收敛速度,利用云模型来优化并行蚁群算法,提出了一种基于云模型的并行蚁群-SVM网页分类方法。将蚂蚁当前位置坐标作为云滴的两个参数,用逆向云发生器产生信息云的三个数字特征,采用不同的方法来更新蚂蚁的信息素,比较真实地体现了现实蚁群的运作情况,达到了实时动态更新的效果。通过对比测试,验证了CPACA-SVM方法在准确率和召回率上均有明显提高,具有较好的分类效果。
Abstract:
SVM is an effective method for learning the classification knowledge from massive data,especially in solving the high dimen-sional pattern recognition problem. But SVM is not conducive to massive data mining. To improve the adaptability of SVM on large-scale scenes and the speed of convergence of the algorithm,utilizing the cloud model to optimize parallel ant colony algorithm,a parallel ant colony-SVM web page classification method based on cloud model is proposed. Three digital characteristics of the cloud is produced from backward cloud generator,the ants current position coordinates is composed of the two parameters of cloud droplets. Using different meth-ods to update the ant pheromones,more accurately reflect the life of the ant colony,to achieve the effect of real-time dynamic updates. By comparison test verify the CPACA-SVM method on precision and recall rate significantly improved,with better classification effect.

相似文献/References:

[1]李霖森 董天罡.云层运动的线性仿真[J].计算机技术与发展,2009,(02):130.
 LI Lin-sen,DONG Tian-gang.Linear Simulation of Cloud Movement[J].,2009,(04):130.
[2]张家精 王焕宝 陈金兰 倪友聪.基于云模型的隶属概念判定算法的改进[J].计算机技术与发展,2007,(10):65.
 ZHANG Jia-jing,WANG Huan-bao,CHEN Jin-lan,et al.An Improved Algorithm for Determining Membership Conception Based on Cloud Mode[J].,2007,(04):65.
[3]王思鹏.基于云模型的识别技术[J].计算机技术与发展,2006,(06):187.
 WANG Si-peng.Detecting Technology Based on Cloud Model[J].,2006,(04):187.
[4]余志虎 戚玉峰.一种基于云模型数据填充的算法[J].计算机技术与发展,2010,(12):34.
 YU Zhi-hu,QI Yu-feng.A Data Filling Algorithm Based on Cloud Model[J].,2010,(04):34.
[5]周伟 许峰 韦琳.基于云模型的电子商务信任机制的研究[J].计算机技术与发展,2011,(03):165.
 ZHOU Wei,XU Feng,WEI Lin.Research on Trust Mechanism for E-Commerce Based on Cloud Model[J].,2011,(04):165.
[6]许少华,张亚光,李学贵.一种基于逆向云变换的混合推理神经网络[J].计算机技术与发展,2015,25(03):118.
 XU Shao-hua,ZHANG Ya-guang,LI Xue-gui.A Reasoning Neural Network Based on Reverse Cloud Transformation[J].,2015,25(04):118.
[7]王巍. 基于云参数贝叶斯网络的威胁评估方法[J].计算机技术与发展,2016,26(06):106.
 WANG Wei. An Threat Assessment Method Based on Cloud Parameters Bayesian Network[J].,2016,26(04):106.
[8]宋丽,张震雷,杨新凯.一种基于云模型的特征选择参数优化研究[J].计算机技术与发展,2019,29(03):93.[doi:10.3969/ j. issn.1673-629X.2019.03.020]
 SONG Li,ZHANG Zhen-lei,YANG Xin-kai.Research on Optimization of Text Feature Selection Parameters Based on Cloud Model[J].,2019,29(04):93.[doi:10.3969/ j. issn.1673-629X.2019.03.020]

更新日期/Last Update: 1900-01-01