[1]谢燕丽,许青林,姜文超.一种基于交叉和变异算子改进的遗传算法研究[J].计算机技术与发展,2014,24(04):80-83.
 XIE Yan-li[],XU Qing-lin[],JIANG Wen-chao[].An Improved Genetic Algorithm Based on Crossover and Mutation Operators[J].,2014,24(04):80-83.
点击复制

一种基于交叉和变异算子改进的遗传算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年04期
页码:
80-83
栏目:
智能、算法、系统工程
出版日期:
2014-04-30

文章信息/Info

Title:
An Improved Genetic Algorithm Based on Crossover and Mutation Operators
文章编号:
1673-629X(2014)04-0080-04
作者:
谢燕丽1许青林2姜文超2
1.广东工业大学 信息工程学院;2.广东工业大学 计算机学院
Author(s):
XIE Yan-li[1]XU Qing-lin[2]JIANG Wen-chao[2]
关键词:
交叉算子变异算子优化遗传算法
Keywords:
crossover operatormutation operatoroptimizationGenetic Algorithm (GA)
分类号:
TP301.6
文献标志码:
A
摘要:
文中针对函数优化方面遗传算法( GA)存在的“早熟”与收敛速度慢的问题,设计了一种基于交叉和变异算子改进的遗传算法。通过研究分析GA,根据交叉算子和变异算子的特点,在现有的GA基础上,引入拉普拉斯算子改进交叉算子以及结合黄金分割法对变异算子做了进一步改进。通过3个测试函数对该算法与标准遗传算法,以及其他两种算法加以对比,仿真结果表明文中的算法不仅增加了个体多样性,防止了“早熟”,且比其他三种算法获得了更优解和更快的收敛速度。理论分析和实验表明,提出的算法是可行有效的。
Abstract:
Aiming at problems of genetic algorithm in terms of function optimization exists the"premature" and slow convergence,a kind of improved genetic algorithm based on crossover and mutation operators is designed. Through research and analysis of GA,according to the characteristics of the crossover operator and mutation operator,on the basis of existing GA,introduce the Laplacian operator to im-prove crossover operator and further improve mutation operator combined with golden section method. Through the three test functions to compare this algorithm with standard Genetic Algorithm ( GA) ,and the other two algorithms,simulation results show that the proposed algorithm can not only increase the diversity of individuals,preventing the "premature",and more than the other three algorithms gain better solution and faster convergence. Theoretical analysis and experimental results show that the proposed method is feasible and effec-tive.

相似文献/References:

[1]王会颖 章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,(03):84.
 WANG Hui-ying,ZHANG Yi-gang.An Improved Artificial Fish- Swarm Algorithm of Solving Clustering Analysis Problem[J].,2010,(04):84.
[2]曹道友 程家兴.基于改进的选择算子和交叉算子的遗传算法[J].计算机技术与发展,2010,(02):44.
 CAO Dao-you,CHENG Jia-xing.A Genetic Algorithm Based on Modified Selection Operator and Crossover Operator[J].,2010,(04):44.
[3]张然 贾瑞玉 钱光超 李龙澍.带佳点交叉算子的非均匀窗口蚁群算法[J].计算机技术与发展,2007,(12):68.
 ZHANG Ran,JIA Rui-yu,QIAN Guang-chao,et al.Ant Colony Algorithm with Good- Point Crossover Operator Based on Different Size Window[J].,2007,(04):68.
[4]邵洪涛 秦亮曦 何莹.带变异算子的非线性惯性权重PSO算法[J].计算机技术与发展,2012,(08):30.
 SHAO Hong-tao,QIN Liang-xi,HE Ying.A Nonlinear Inertia Weight Particle Swarm Optimization Algorithm with Mutation Operator[J].,2012,(04):30.
[5]严宏[][]. 教学资源配置优化中遗传算法的应用与改进[J].计算机技术与发展,2016,26(03):130.
 YAN Hong[][]. Application and Improvement of Genetic Algorithm for Optimization in Allocating Teaching Resources[J].,2016,26(04):130.
[6]徐传敬,赵敏,李天明. 一种改进遗传算法的PID参数整定研究[J].计算机技术与发展,2016,26(09):12.
 XU Chuan-jing,ZHAO Min,LI Tian-ming. Research on PID Parameter Tuning Based on an Improved Genetic Algorithm[J].,2016,26(04):12.
[7]周艳平,蔡 素.一种自适应差分进化算法及应用[J].计算机技术与发展,2019,29(07):119.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 024]
 ZHOU Yan-ping,CAI Su.An Adaptive Differential Evolution Algorithm and Its Application[J].,2019,29(04):119.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 024]
[8]刘红 韦穗.遗传算子的分析[J].计算机技术与发展,2006,(10):80.
 LIU Hong,WEI Sui.Analysis on Genetic Operators[J].,2006,(04):80.

更新日期/Last Update: 1900-01-01