[1]苏卫卫,马素霞,齐林海.基于ARIMA和神经网络的电能质量稳态指标预测[J].计算机技术与发展,2014,24(03):163-167.
 SU Wei-wei,MA Su-xia,QI Lin-hai.Predicting of Power Quality Steady Indicators Based on ARIMA and Neural Network[J].,2014,24(03):163-167.
点击复制

基于ARIMA和神经网络的电能质量稳态指标预测()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年03期
页码:
163-167
栏目:
应用开发研究
出版日期:
2014-03-31

文章信息/Info

Title:
Predicting of Power Quality Steady Indicators Based on ARIMA and Neural Network
文章编号:
1673-629X(2014)03-0163-05
作者:
苏卫卫马素霞齐林海
华北电力大学 控制与计算机工程学院
Author(s):
SU Wei-weiMA Su-xiaQI Lin-hai
关键词:
电能质量稳态指标时间序列算法神经网络预测
Keywords:
power qualitysteady-state indicatorstime series algorithmneural networkforecasting
分类号:
TP39
文献标志码:
A
摘要:
根据有功功率与五项电能质量稳态指标的相关性以及有功功率的数据特点,提出了一种对电能质量稳态指标的预测方法。该方法利用ARIMA时间序列算法对有功功率进行了预测,并根据有功功率与五项电能质量稳态指标的相关性建立神经网络预测模型对五项常规指标进行预测。通过分析预测结果与真实值的误差可得平均误差均在20%以内,该方法可以有效预测出电能质量指标序列的变化趋势,从而对电力系统的稳定性、安全性和经济性起到很好的作用。
Abstract:
Based on the active power with five power quality indicators as well as the relevance of active power data characteristics,pro-pose a steady-state power quality indicators forecasting method. This method uses the ARIMA time series algorithm to predict the active power,and in accordance with the relevance of the active power with five steady-state power quality indicators,establish neural network model to predict the five conventional indicators. By analyzing the predicted and actual values of the error can be an average error of less than 20%,so the method can predict the sequence change trends of power quality,and thus playing a very good role for the power system stability,security and economy.

相似文献/References:

[1]牛媛媛 陆达 陈明金.电能质量评估系统的设计及实现[J].计算机技术与发展,2009,(12):120.
 NIU Yuan-yuan,LU Da,CHEN Ming-jin.Design and Realization of Power Quality Analyzing System[J].,2009,(03):120.

更新日期/Last Update: 1900-01-01