[1]谢泽奇,张会敏.基于MMA8452Q的肢体动作识别系统的设计[J].计算机技术与发展,2014,24(02):198-201.
 XIE Ze-qi,ZHANG Hui-min.Design of a Gesture Recognition System Based on MMA8452Q[J].,2014,24(02):198-201.
点击复制

基于MMA8452Q的肢体动作识别系统的设计()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年02期
页码:
198-201
栏目:
应用开发研究
出版日期:
2014-02-28

文章信息/Info

Title:
Design of a Gesture Recognition System Based on MMA8452Q
文章编号:
1673-629X(2014)02-0198-04
作者:
谢泽奇张会敏
郑州大学西亚斯国际学院
Author(s):
XIE Ze-qiZHANG Hui-min
关键词:
加速度传感器动作识别系统
Keywords:
acceleration sensorgesture recognitionsystem
文献标志码:
A
摘要:
针对手势交互中手势信号的相似性和不稳定性,在研究了加速度传感器MMA8452Q的基础上,设计并实现了一种基于三轴加速度传感器的手势识别方案。该系统利用MMA8452Q传感器采集手部倾斜角度信号,通过IIC连接方式将采集到的数据传送到单片机STC89C52RC,单片机STC89C52RC对接收到的数据进行分析处理,最后输出相对应的控制信号,可以用来实现肢体动作控制家电。测试结果表明:系统测量精度高、运行稳定,实时性好、性价比高,具有一定的实用价值。
Abstract:
Aiming at similarity and instability of gesture activity signal in gesture interaction,a gesture recognition scheme based on three-axial accelerometer Freescale MMA8452Q is designed and realized. The system uses the MMA8452Q chip to collect the hand tilt angle signals,then transmits the data to the MCU STC89C52RC through the IIC bus,the MCU STC89C52RC analyzes and processes the sig-nals,then outputs the final corresponding control signals,which is used to implement gesture for home appliances controlling. The test re-sult shows that this system has high measuring accuracy,stable operation,good real-time and high performance-price ratio,with certain practical value.

相似文献/References:

[1]王雨,陈常嘉,董岩磊.基于加速度传感器的车辆防盗技术研究[J].计算机技术与发展,2013,(05):135.
 WANG Yu,CHEN Chang-jia,DONG Yan-lei.Research on Vehicle’s Anti-theft Technique Based on Acceleration Sensor[J].,2013,(02):135.
[2]陆超. PCA方法的运动轨迹检测算法研究[J].计算机技术与发展,2017,27(05):179.
 LU Chao. Research on Motion Trajectory Detection Algorithm with PCA[J].,2017,27(02):179.
[3]赵一丹,肖秦琨,高 嵩.基于模糊神经网络和图模型推理的动作识别[J].计算机技术与发展,2018,28(08):80.[doi:10.3969/ j. issn.1673-629X.2018.08.017]
 ZHAO Yi-dan,XIAO Qin-kun,GAO Song.Action Recognition Based on Fuzzy Neural Network and[J].,2018,28(02):80.[doi:10.3969/ j. issn.1673-629X.2018.08.017]
[4]金壮壮,曹江涛,姬晓飞.多源信息融合的双人交互行为识别算法研究[J].计算机技术与发展,2018,28(10):32.[doi:10.3969/ j. issn.1673-629X.2018.10.007]
 JIN Zhuang-zhuang,CAO Jiang-tao,JI Xiao-fei.Research on Human Interaction Recognition Algorithm Based on Multi-source Information Fusion[J].,2018,28(02):32.[doi:10.3969/ j. issn.1673-629X.2018.10.007]
[5]丁文超,张俊宝,阴庚雷.基于 CRNN 的 CSI 动作识别[J].计算机技术与发展,2021,31(06):7.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 002]
 DING Wen-chao,ZHANG Jun-bao,YIN Geng-lei.CSI Action Recognition Based on CRNN[J].,2021,31(02):7.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 002]
[6]刘 勃,孔韦韦,肖家钦,等.基于 RBF 神经网络的跌倒检测算法[J].计算机技术与发展,2022,32(06):167.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 028]
 LIU Bo,KONG Wei-wei,XIAO Jia-qin,et al.Fall Detection Algorithm Based on RBF Neural Network[J].,2022,32(02):167.[doi:10. 3969 / j. issn. 1673-629X. 2022. 06. 028]
[7]刘 野,冯 笑,张小可.基于加速度传感器的主板形变量监测设计[J].计算机技术与发展,2022,32(S2):158.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 028]
 LIU Ye,FENG Xiao,ZHANG Xiao-ke.Design of Motherboard Deformation Monitoring Based on Accelerometer[J].,2022,32(02):158.[doi:10. 3969 / j. issn. 1673-629X. 2022. S2. 028]
[8]束 阳,李汪根,高 坤,等.基于轻量级语义信息融合的动作识别方法[J].计算机技术与发展,2023,33(06):181.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 027]
 SHU Yang,LI Wang-gen,GAO Kun,et al.Action Recognition Method Based on Lightweight Semantic Information Fusion[J].,2023,33(02):181.[doi:10. 3969 / j. issn. 1673-629X. 2023. 06. 027]
[9]张 艳,肖文琛,张 博.基于双流骨架信息的人体动作识别方法[J].计算机技术与发展,2024,34(01):158.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 023]
 ZHANG Yan,XIAO Wen-chen,ZHANG Bo.Human Action Recognition Method Based on Two-flow Skeleton Information[J].,2024,34(02):158.[doi:10. 3969 / j. issn. 1673-629X. 2024. 01. 023]

更新日期/Last Update: 1900-01-01