[1]冯博,戴航,慕德俊.Android恶意软件检测方法研究[J].计算机技术与发展,2014,24(02):149-152.
 FENG Bo,DAI Hang,MU De-jun.Research of Malware Detection Approach for Android[J].,2014,24(02):149-152.
点击复制

Android恶意软件检测方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年02期
页码:
149-152
栏目:
安全与防范
出版日期:
2014-02-28

文章信息/Info

Title:
Research of Malware Detection Approach for Android
文章编号:
1673-629X(2014)02-0149-04
作者:
冯博戴航慕德俊
西北工业大学 自动化学院
Author(s):
FENG BoDAI HangMU De-jun
关键词:
Android安全恶意软件动态检测机器学习
Keywords:
Android securitymalwaredynamic detectionmachine learning
文献标志码:
A
摘要:
针对Android恶意软件泛滥的局面,提出了一种基于行为的恶意软件动态检测的方法。首先,综合收集软件运行时的动态信息,包括软件运行时系统的信息和软件的内核调用信息,并将内核调用序列截断成定长短序列的形式。其次,将各方面信息统一为属性、属性值的形式。以信息增益作为指标,选用C4.5算法筛选出信息增益高、作用不重叠的属性,并依据信息增益的大小为各属性正比分配权重因子。最后,用K最近邻算法完成机器学习,识别出与样本类似的恶意软件,并将未知类型的软件标记为疑似恶意。实验结果表明,该方法识别率高、误报率低。通过增大学习样本库,识别的效果可以进一步提高。
Abstract:
In view of the flood situation for Android malware,propose a method of behavior-based dynamic malware detection. First,get a comprehensive collection of software run-time information,including system information and kernel calls. The kernel call sequences are truncated to fixed length. Second,form all the information as property and values. Taking information gain as an indicator,select proper-ties that have high information gain and different impact by applying the C4. 5 algorithm,and proportionally assign weighting factor to properties based on the size of the information gain. Finally,apply K-Nearest Neighbor algorithm to complete the process of machine learning,making the system identify malicious software that similar to the sample,and regard unknown types of software as suspected malware. The result of experiment shows that the method has a high true positive rate and low false positive rate. Moreover,the result can be further improved with the increase of the learning sample library.

相似文献/References:

[1]袁志坚,王春平陈融,陈萍.Android平台安全威胁及其应对策略[J].计算机技术与发展,2013,(09):110.
 YUAN Zhi-jian[],WANG Chun-ping[],CHEN Rong[],et al.Security Threats on Android Platform and Their Coping Strategies[J].,2013,(02):110.
[2]钱正旸,施勇,薛质. Android系统点击劫持攻防技术研究[J].计算机技术与发展,2015,25(10):135.
 QIAN Zheng-yang,SHI Yong,XUE Zhi. Study of Clickjacking Technology on Android[J].,2015,25(02):135.
[3]杨佳,张慧翔,罗怡,等. 基于自组织映射的安卓恶意软件分析研究[J].计算机技术与发展,2016,26(01):86.
 YANG Jia,ZHANG Hui-xiang,LUO Yi,et al. Research on Empirical Analysis of Android Malware Based on SOM[J].,2016,26(02):86.
[4]王倩文,沈苏彬,吴振宇.基于安卓平台的恶意软件动态监测的研究[J].计算机技术与发展,2018,28(08):124.[doi:10.3969/ j. issn.1673-629X.2018.08.026]
 WANG Qian-wen,SHEN Su-bin,WU Zhen-yu.Research on Malware Dynamic Monitoring Based on Android Platform[J].,2018,28(02):124.[doi:10.3969/ j. issn.1673-629X.2018.08.026]

更新日期/Last Update: 1900-01-01