[1]郑诚,刘娇丽,项珑.基于VSM和LDA模型的FAQ问答系统[J].计算机技术与发展,2014,24(01):133-135.
 ZHENG Cheng,LIU Jiao-li,XIANG Long.FAQ Answering System Based on VSM and LDA Model[J].,2014,24(01):133-135.
点击复制

基于VSM和LDA模型的FAQ问答系统()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年01期
页码:
133-135
栏目:
智能、算法、系统工程
出版日期:
2014-01-31

文章信息/Info

Title:
FAQ Answering System Based on VSM and LDA Model
文章编号:
1673-629X(2014)01-0133-03
作者:
郑诚刘娇丽项珑
安徽大学 计算机科学与技术学院
Author(s):
ZHENG ChengLIU Jiao-liXIANG Long
关键词:
VSM相似度计算LDA(LatentDirichletAllocation)主题-词分布
Keywords:
VSMsimilarity calculationLDA ( Latent Dirichlet Allocation)topic-term distribution
分类号:
TP31
文献标志码:
A
摘要:
传统的搜索引擎返回的数据太过庞大,很多情况下用户不能快速地找到自己要的答案。在这种情况下,文中引入FAQ系统。 FAQ中如何找到最佳匹配答案,是文中的研究重点。改进了传统的VSM模型,使得它能更好地体现问题中词的权重。重点引入了LDA模型,并用计算机故障领域内的文档资料对它进行训练,得到主题-词的概率分布。通过主题-词中词的概率分布,计算词与词的相关度,提出通过词与词间相关度计算句子与句子间相似度的算法。对两个算法进行综合,得到最终的相似度算法。文中对FAQ进行整理,得到了FAQ问答系统的雏形。通过实验分析,说明相似度算法有很好的效果。
Abstract:
The data returned by the traditional search engine is too large,users cannot quickly find the answer they want sometimes. In this case,introduce FAQ system. How to find the best match in the FAQ system is the focus. An improved VSM model is presented in this pa-per. This new model is used in order to reflect the weight of the terms in question better. LDA,which was trained with documentation within the domain of computer malfunction generates a probability distribution of topic-term by which the relevance between words is calculated. Then the algorithm of calculating similarity between sentences by calculating relevance between words was presented. Com-bined with the above two algorithm,get the final similarity algorithm. FAQ is collected and rudiment of FAQ answering system is imple-mented in this paper. The algorithm used is proved well by the experiments.

相似文献/References:

[1]康文宁 杨志强.相似度计算在智能答疑系统中的研究及应用[J].计算机技术与发展,2010,(02):71.
 KANG Wen-ning,YANG Zhi-qiang.Research and Application of Sentence Similarity Measurement in Intelligent Answering System[J].,2010,(01):71.
[2]李伟 杨思春 纪滨.自动答疑系统中问题的聚类分析[J].计算机技术与发展,2012,(03):43.
 LI Wei,YANG Si-chun,JI Bin.Cluster Analysis of Automatic Answering System[J].,2012,(01):43.
[3]李春生,卢鹏飞,张可佳.基于语句相似度计算的智能答疑系统机理研究[J].计算机技术与发展,2018,28(04):91.[doi:10.3969/ j. issn.1673-629X.2018.04.0019]
 LI Chun-sheng,LU Peng-fei,ZHANG Ke-jia.Research on Mechanism of Intelligent Question Answering System Based on Sentence Similarity Computation[J].,2018,28(01):91.[doi:10.3969/ j. issn.1673-629X.2018.04.0019]
[4]陈志奎,刘 杰,丁 锋,等.基于案例推理的民间借贷案件适用法律推荐[J].计算机技术与发展,2021,31(05):198.[doi:10. 3969 / j. issn. 1673-629X. 2021. 05. 034]
 ,,et al.ApplicableLawRecommendationBasedonCBRforPrivateLoanCases[J].,2021,31(01):198.[doi:10. 3969 / j. issn. 1673-629X. 2021. 05. 034]
[5]杨思渊,蒋锐鹏,海仁古丽·阿不力提甫,等.基于相似度计算方法的人脸图分割[J].计算机技术与发展,2021,31(06):46.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 009]
 YANG Si-yuan,JIANG Rui-peng,Hairenguli·ABULITIFU,et al.Face Image Segmentation Based on Similarity Calculation Method[J].,2021,31(01):46.[doi:10. 3969 / j. issn. 1673-629X. 2021. 06. 009]

更新日期/Last Update: 1900-01-01