[1]郭海如,李志敏,万兴,等.一种基于随机GA的提高BP网络泛化能力的方法[J].计算机技术与发展,2014,24(01):105-108.
 GUO Hai-ru,LI Zhi-min,WAN Xing,et al.A Method of Improving Generalization for BP Network Based on Random GA[J].,2014,24(01):105-108.
点击复制

一种基于随机GA的提高BP网络泛化能力的方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年01期
页码:
105-108
栏目:
智能、算法、系统工程
出版日期:
2014-01-31

文章信息/Info

Title:
A Method of Improving Generalization for BP Network Based on Random GA
文章编号:
1673-629X(2014)01-0105-04
作者:
郭海如李志敏万兴熊斌
湖北工程学院 计算机与信息科学学院
Author(s):
GUO Hai-ruLI Zhi-minWAN XingXIONG Bin
关键词:
随机遗传算法神经网络测试误差泛化能力
Keywords:
random genetic algorithmneural networktest errorgeneralization capability
分类号:
TP181
文献标志码:
A
摘要:
LM-BP网络对其初始权值和阈值敏感,泛化能力不强,针对该缺点,采用遗传算法( GA)对其初始权阈值进行优化,在一定程度上能提高LM-BP网络的泛化能力。为进一步扩展GA初始种群的覆盖范围,进一步提高LM-BP网络的泛化能力,采用多次随机产生初始种群多次优化的方法。以伦河孝感段氟化物含量为实例,建立随机GA的LM-BP网络模型,对原始数据进行拟合及测试,结果表明该方法基本能100%拟合,测试误差不超过2.3%。经过对比实验,证明了该方法的有效性。
Abstract:
The LM-BP neural network was sensitive to its initial weight values and threshold,and it had bad generalization ability. In view of its shortcomings,the initial weights and threshold of LM-BP neural network were optimized with GA. The generalization of LM-BP neural network was improved to a certain extent. To expand the coverage of initial population,the initial populations were randomly generated iteratively and the network was optimized multi times. Thus,the generalization of LM-BP network was further improved. Take the content of fluorine in Lun River from Xiaogan as an example,the LM-BP neural network model based on random GA was estab-lished,and the raw data were fitted and tested. The results showed that the accordance of fitting data is approximately 100%,and the tes-ting errors were less than 2. 3%. Through contrast experiments,the validity of this method was proved.

相似文献/References:

[1]路川 胡欣杰.区域航空市场航线客流量预测研究[J].计算机技术与发展,2010,(04):84.
 LU Chuan,HU Xin-jie.Analysis of Regional Airline Passenger Forecast Title[J].,2010,(01):84.
[2]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(01):148.
[3]包力伟 周俊.铸锻企业生产质量控制系统的开发[J].计算机技术与发展,2008,(04):174.
 BAO Li-wei,ZHOU Jun.Development of a Manufacture Quality Control System in Casting Company[J].,2008,(01):174.
[4]李志俊 程家兴 金奎 饶玉佳.基于样本期望训练数的BP神经网络改进研究[J].计算机技术与发展,2009,(05):103.
 LI Zhi-jun,CHENG Jia-xing,JIN Kui,et al.BP Algorithm Improvement Based on Sample Expected Training Number[J].,2009,(01):103.
[5]李龙澍 葛瑞峰 王慧萍.基于神经网络的批强化学习在Robocup中的应用[J].计算机技术与发展,2009,(07):98.
 LI Long-shu,GE Rui-feng,WANG Hui-ping.Application of Batch Reinforcement Learning Based on NN to Robocup[J].,2009,(01):98.
[6]贾志先.神经网络在空白试卷识别中的应用[J].计算机技术与发展,2009,(08):208.
 JIA Zhi-xian.Application of Neural Network in Recognization Blank Examination Paper[J].,2009,(01):208.
[7]肖宜龙 路游 亓永刚.基于神经网络的NURBS曲面重建[J].计算机技术与发展,2009,(09):65.
 XIAO Yi-long,LU You,QI Yong-gang.NURBS Surface Reconstruction Based on Neural Network[J].,2009,(01):65.
[8]蔡秋茹 罗烨 柳益君 叶飞跃.企业资信的BP神经网络评估模型研究[J].计算机技术与发展,2009,(10):117.
 CAI Qiu-ru,LUO Ye,LIU Yi-jun,et al.Research on BP Neural Network Model for Corporation Credit Rating[J].,2009,(01):117.
[9]王晓敏 刘希玉 戴芬.BP神经网络预测算法的改进及应用[J].计算机技术与发展,2009,(11):64.
 WANG Xiao-min,LIU Xi-yu,DAI Fen.Improvement and Application of BP Neural Network Forecasting Algorithm[J].,2009,(01):64.
[10]崔海青 刘希玉.基于粒子群算法的RBF网络参数优化算法[J].计算机技术与发展,2009,(12):117.
 CUI Hai-qing,LIU Xi-yu.Parameter Optimization Algorithm of RBF Neural Network Based on PSO Algorithm[J].,2009,(01):117.

更新日期/Last Update: 1900-01-01