[1]赵越,徐鑫,乔利强.张量线性判别分析算法研究[J].计算机技术与发展,2014,24(01):73-76.
 ZHAO Yue[,XU Xin[],QIAO Li-qiang[].Research of Tensor Linear Discriminant Analysis Algorithm[J].,2014,24(01):73-76.
点击复制

张量线性判别分析算法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
24
期数:
2014年01期
页码:
73-76
栏目:
智能、算法、系统工程
出版日期:
2014-01-31

文章信息/Info

Title:
Research of Tensor Linear Discriminant Analysis Algorithm
文章编号:
1673-629X(2014)01-0073-04
作者:
赵越1徐鑫1乔利强2
[1]渤海大学 大学计算机教研部;[2]东北大学 信息学院
Author(s):
ZHAO Yue[1XU Xin[1]QIAO Li-qiang[2]
关键词:
线性判别分析张量子空间张量线性判别分析特征提取
Keywords:
linear discriminant analysistensorsubspacetensor linear discriminant analysisfeature extraction
分类号:
TP301
文献标志码:
A
摘要:
针对传统线性判别分析中存在的小样本问题及对TensorLDA算法中两个投影矩阵不能同时计算、低维特征提取不充分的问题,文中研究并实现了张量子空间下的张量线性判别分析( TensorLDA)算法。并且提出了It-TensorLDA算法,即先用单位矩阵初始化,再利用优化准则求另一个投影矩阵,并进行多次迭代的改进方法。采用ORL数据库测试算法的性能,在ORL人脸数据库上It-TensorLDA比TensorLDA的平均识别率高1.88%,比Fisherfaces的平均识别率高3.03%。因此,文中算法有效避免了小样本问题,提高了人脸识别效果。
Abstract:
Aiming at problems of small sample existed in the traditional linear discriminant analysis and two projection matrixes of Ten-sorLDA algorithms cannot calculate,low-dimensional feature extraction is not sufficient,study and implement TensorLDA based on ten-sor subspace. And the It-TensorLDA algorithm is presented,which first initializes with unit matrix,then uses the optimized criterion to get another projection matrix,carrying on many times iteration. Apply ORL human dataset to test the performance of algorithm. The ex-periments show that in ORL dataset It-TensorLDA is 1. 88% higher than TensorLDA and 3. 03% compared with Fisherfaces. So,the al-gorithm avoids the small sample problem,enhances the efficiency of face recognition.

相似文献/References:

[1]黄国宏 刘刚.一种新的基于DCT变换的线性判别分析[J].计算机技术与发展,2008,(06):97.
 HUANG Guo-hong,LIU Gang.A Novel Linear Discriminant Analysis Based on DCT[J].,2008,(01):97.
[2]邓炳荣 伍世元 武琳 邵雅雯 李江勇.一种基于计算机嗅觉的卷烟等级识别方法[J].计算机技术与发展,2011,(11):177.
 DENG Bing-rong,WU Shi-yuan,WU Lin,et al.Application of Electronic Nose in Discrimination of Different Levels Cigarette[J].,2011,(01):177.
[3]杨利峰 谢世朋.基于统计优化的单应矩阵估计算法[J].计算机技术与发展,2012,(08):139.
 YANG Li-feng,XIE Shi-peng.Estimation Method of Homography Matrix Based on Statistical Optimization[J].,2012,(01):139.
[4]闵锋,鲁统伟,邹旭.自适应子空间选择方法研究[J].计算机技术与发展,2013,(10):83.
 MIN Feng,LU Tong-wei,ZOU Xu.Research on Adaptive Subspaces Selection Method[J].,2013,(01):83.
[5]陈惠勤,骆德汉. 基于扩散映射和LDA的辛味中药材鉴别研究[J].计算机技术与发展,2015,25(05):192.
 CHEN Hui-qin,LUO De-han. Research on Classification of Pungent Chinese Herbal Medicines Based on Diffusion Maps and LDA[J].,2015,25(01):192.
[6]郑继亭,李 珺.基于WMSNs 的温室植物病害远程监测系统[J].计算机技术与发展,2018,28(01):174.[doi:10.3969/ j. issn.1673-629X.2018.01.037]
 ZHENG Ji-ting,LI Jun.Remote Monitoring System for Greenhouse Plant Disease Based on WMSNs[J].,2018,28(01):174.[doi:10.3969/ j. issn.1673-629X.2018.01.037]
[7]谢群辉,田 青.权重随机正交化的极速非线性判别分析网络[J].计算机技术与发展,2018,28(01):23.[doi:doi:10.3969/ j. issn.1673-629X.2018.01.005]
 XIE Qun-hui,TIAN Qing.Nonlinear Discriminant Analysis Networks with Random and Orthogonalized Input Weights[J].,2018,28(01):23.[doi:doi:10.3969/ j. issn.1673-629X.2018.01.005]
[8]冯 宇.基于张量偏最小二乘法的高维输出预测模型[J].计算机技术与发展,2019,29(07):114.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 023]
 FENG Yu.A Multi-dimensional Output Prediction Model Based on Tensor Partial Least Squares[J].,2019,29(01):114.[doi:10. 3969 / j. issn. 1673-629X. 2019. 07. 023]
[9]肖 梁,韩 璐,魏鹏飞,等.基于 Bagging 集成学习的多集类不平衡学习[J].计算机技术与发展,2021,31(10):1.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 001]
 XIAO Liang,HAN Lu,WEI Peng-fei,et al.Bagging Ensemble Learning Based Multiset Class-imbalanced Learning[J].,2021,31(01):1.[doi:10. 3969 / j. issn. 1673-629X. 2021. 10. 001]

更新日期/Last Update: 1900-01-01