[1]姜参,王大伟.一种改进蚁群聚类的入侵检测方法[J].计算机技术与发展,2013,(12):139-142.
 JIANG Shen,WANG Da-wei.An Improved Ant Colony Clustering Method for Intrusion Detection[J].,2013,(12):139-142.
点击复制

一种改进蚁群聚类的入侵检测方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年12期
页码:
139-142
栏目:
安全与防范
出版日期:
1900-01-01

文章信息/Info

Title:
An Improved Ant Colony Clustering Method for Intrusion Detection
文章编号:
1673-629X(2013)12-0139-04
作者:
姜参王大伟
渤海大学 管理学院
Author(s):
JIANG ShenWANG Da-wei
关键词:
网络安全入侵检测数据挖掘蚁群聚类聚类分析
Keywords:
network safetyintrusion detectiondata miningant colony clusteringcluster analysis
文献标志码:
A
摘要:
入侵检测是网络信息安全的一个重要方面。针对现有的入侵检测对各类攻击不全面以及在检测率低误检率高的缺点,文中提出了一种改进的蚁群聚类的入侵检测方法。该方法对蚁群聚类算法的收敛速度方面和易陷入局部最优问题进行了改进,在优化过程中引进K-means算法以及信息熵,从而使其能够对信息素的更新进行自动的调整,提高了聚类速度和效果。进而设计了网络入侵检测系统。实验结果表明,该方法不仅提高了检测率,而且降低了误检率,对于各大类攻击都能够进行精确的检测
Abstract:
Intrusion detection is an important aspect of the network information safety. For the disadvantage that the existing intrusion de-tection method is not comprehensive of various kinds of attack and has lower detection rate and the higher fault detection rate,an im-proved ant colony clustering method for intrusion detection is proposed. The convergence rate of ant colony cluster algorithm is improved. In the optimization process,the information entropy is introduced to prevent into local optimal,and thus the method can adjust automati-cally the pheromone updating and improve the clustering speed. And follow on,the intrusion detection system is designed. The experimen-tal results show that the method not only improves the detection rate,but reduces the fault detection rate,and can detect precisely the vari-ous kinds of attacks

相似文献/References:

[1]李雷 丁亚丽 罗红旗.基于规则约束制导的入侵检测研究[J].计算机技术与发展,2010,(03):143.
 LI Lei,DING Ya-li,LUO Hong-qi.Intrusion Detection Technology Research Based on Homing - Constraint Rule[J].,2010,(12):143.
[2]马志远,曹宝香.改进的决策树算法在入侵检测中的应用[J].计算机技术与发展,2014,24(01):151.
 MA Zhi-yuan,CAO Bao-xiang.Application of Improved Decision Tree Algorithm in Intrusion Detection System[J].,2014,24(12):151.
[3]高峥 陈蜀宇 李国勇.混合入侵检测系统的研究[J].计算机技术与发展,2010,(06):148.
 GAO Zheng,CHEN Shu-yu,LI Guo-yong.Research of a Hybrid Intrusion Detection System[J].,2010,(12):148.
[4]林英 张雁 欧阳佳.日志检测技术在计算机取证中的应用[J].计算机技术与发展,2010,(06):254.
 LIN Ying,ZHANG Yan,OU Yang-jia.Application of Log Testing Technology in Computer Forensics[J].,2010,(12):254.
[5]李钦 余谅.基于免疫遗传算法的网格入侵检测模型[J].计算机技术与发展,2009,(05):162.
 LI Qin,YU Liang.Grid Intrusion Detection Model Based on Immune Genetic Algorithm[J].,2009,(12):162.
[6]黄世权.网络存储安全分析[J].计算机技术与发展,2009,(05):170.
 HUANG Shi-quan.Analysis of Network Storage's Safety[J].,2009,(12):170.
[7]李睿 肖维民.基于孤立点挖掘的异常检测研究[J].计算机技术与发展,2009,(06):168.
 LI Rui,XIAO Wei-min.Research on Anomaly Intrusion Detection Based on Outlier Mining[J].,2009,(12):168.
[8]胡琼凯 黄建华.基于协议分析和决策树的入侵检测研究[J].计算机技术与发展,2009,(06):179.
 HU Oiong-kai,HUANG Jian-hua.Intrusion Detection Based on Protocol Analysis and Decision Tree[J].,2009,(12):179.
[9]汪世义.基于优化支持向量机的网络入侵检测技术研究[J].计算机技术与发展,2009,(07):177.
 WANG Shi-yi.Network Intrusion Detection Based on Improved Support Vector Machine[J].,2009,(12):177.
[10]严华 蔡瑞英.即时通信监控系统的设计与实现[J].计算机技术与发展,2009,(07):242.
 YAN Hua,CAI Rui-ying.Design and Implementation of Monitoring System of Instant Messaging[J].,2009,(12):242.
[11]李生 邓一贵 唐学文 潘磊 林玉香.基于移动代理的分布式入侵检测系统的研究[J].计算机技术与发展,2009,(09):132.
 LI Sheng,DENG Yi-gui,TANG Xue-wen,et al.Research of Mobile Agent - Based Distributed Intrusion Detection System[J].,2009,(12):132.
[12]邵晓宇 杨善林 褚伟.基于Linux入侵检测动态防火墙的设计与实现[J].计算机技术与发展,2008,(05):156.
 SHAO Xiao-yu,YANG Shan-lin,CHU Wei.Design and Implementation of Dynamic Intrusion Detection Firewall Based on Linux[J].,2008,(12):156.
[13]李守国 李俊.基于数据挖掘的入侵检测系统设计[J].计算机技术与发展,2006,(04):212.
 LI Shou-guo,LI Jun.Design of Data Mining Based Intrusion Detection System[J].,2006,(12):212.
[14]陈建锐 何增颖 梁永成.IPv6网络入侵检测系统设计[J].计算机技术与发展,2010,(09):123.
 CHEN Jian-rui,HE Zeng-ying,LIANG Yong-cheng.Design of Network Intrusion Detection System on IPv6[J].,2010,(12):123.
[15]王峰 宗平.面向混合入侵检测策略的应用模型研究[J].计算机技术与发展,2011,(07):149.
 WANG Feng,ZONG Ping.Study of Mixed Model Oriented Intrusion Detection[J].,2011,(12):149.
[16]李建 李杰 孙燕花.基于聚类融合的入侵检测[J].计算机技术与发展,2011,(10):250.
 LI Jian,LI Jie,SUN Yan-hua.An Intrusion Detection Based on Clustering Ensemble[J].,2011,(12):250.
[17]谢振国 凌捷.网络安全预警系统的研究[J].计算机技术与发展,2011,(11):250.
 XIE Zhen-guo,LING Jie.Study of a Network Security and Early-Warning System[J].,2011,(12):250.
[18]陈剑,蔡龙征.一种无监督异常入侵检测的簇异常度量方法[J].计算机技术与发展,2013,(04):131.
 CHEN Jian,CAI Long-zheng.A Cluster Anomaly Measure Approach for Unsupervised Anomaly Intrusion Detection[J].,2013,(12):131.
[19]张公让,万飞. 基于网格搜索的 SVM 在入侵检测中的应用[J].计算机技术与发展,2016,26(01):97.
 ZHANG Gong-rang,WAN Fei. Application of Support Vector Machine in Network Intrusion Detection Based on Grid Search[J].,2016,26(12):97.
[20]严佩敏,姚嘉豪.SDN 下基于入侵检测的主动蜜网[J].计算机技术与发展,2021,31(增刊):96.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 019]
 YAN Pei-min,YAO Jia-hao.Active Honeynet Based on Intrusion Detection System in Software Defined Network[J].,2021,31(12):96.[doi:10. 3969 / j. issn. 1673-629X. 2021. S. 019]

更新日期/Last Update: 1900-01-01