[1]尹晓东.噪声信道下输出耦合复杂动态网络的状态估计[J].计算机技术与发展,2013,(11):62-65.
 YIN Xiao-dong.State Estimation of Output-coupling Complex Dynamical Networks under Noisy Transmission Channel[J].,2013,(11):62-65.
点击复制

噪声信道下输出耦合复杂动态网络的状态估计()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年11期
页码:
62-65
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
State Estimation of Output-coupling Complex Dynamical Networks under Noisy Transmission Channel
文章编号:
1673-629X(2013)11-0062-04
作者:
尹晓东
南京邮电大学 自动化学院
Author(s):
YIN Xiao-dong
关键词:
状态估计复杂动态网络信道噪声李雅普诺夫稳定性
Keywords:
state estimationcomplex dynamical networkschannel noiseLyapunov stability
文献标志码:
A
摘要:
文中研究了一类带有噪声的复杂动态网络的状态估计问题,不同于现有的根据节点的状态变量构造观测器的方法,文中利用节点的输出变量构造观测器,并基于积分控制的思想提出了一种估计网络状态的新方案。根据李雅普诺夫稳定性判据,所提出的构思的可行性得到了论证,并且以线性矩阵不等式的形式给出了状态估计的充分条件。分别以无标度网络和小世界网络为模型,以Lorenz混沌映射作为复杂网络的节点进行数值化仿真。研究表明,这种方法能够使系统状态的估计误差收敛于0,仿真的结果进一步证明了文中所提方案的有效性
Abstract:
The state estimation problem is addressed in this paper for a output-coupling complex dynamical network under noisy transmis-sion channel. Be different from current method of establishing the observer in accordance with state variable for node,a new scheme of es-timating network state is presented based on integral control thoughts,using output for observer. The feasibility of idea is verified accord-ing to Lyapunov stability theory and give the sufficient condition of state estimation by linear matrix inequality. Respectively take the scale-free network and the small world network as two models,the Lorenz chaotic system as the node dynamics,to do some simulations. The results indicate that the method can make the estimating error of system state converged zero,further verifying the effectiveness of the method

相似文献/References:

[1]顾梦祺 蒋国平 张金鑫.节点非线性耦合的复杂动态网络同步控制研究[J].计算机技术与发展,2012,(08):107.
 GU Meng-qi,JIANG Guo-ping,ZHANG Jin-xin.Synchronization of Complex Dynamical Networks with Nonlinearly Coupled Nodes[J].,2012,(11):107.
[2]曹素雯.不同节点动态的复杂网络外部同步牵制控制[J].计算机技术与发展,2013,(11):124.
 CAO Su-wen.Pinning Synchronization Control of Complex Network with Different Node-dynamics[J].,2013,(11):124.
[3]贺 姗,刘沫萌,李 迎.迭代收缩非线性状态约束滤波算法[J].计算机技术与发展,2022,32(11):95.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 014]
 HE Shan,LIU Mo-meng,LI Ying.Iterative Shrinkage Nonlinear State Constraints Filter[J].,2022,32(11):95.[doi:10. 3969 / j. issn. 1673-629X. 2022. 11. 014]

更新日期/Last Update: 1900-01-01