[1]殷凤霞.社会网络中基于内容语义的新闻推荐方法研究[J].计算机技术与发展,2013,(10):253-257.
 YIN Feng-xia.Research on Method of News Recommendation Based on Content Semantic in Social Network[J].,2013,(10):253-257.
点击复制

社会网络中基于内容语义的新闻推荐方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年10期
页码:
253-257
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Method of News Recommendation Based on Content Semantic in Social Network
文章编号:
1673-629X(2013)10-0253-05
作者:
殷凤霞
安康学院 教育科学系
Author(s):
YIN Feng-xia
关键词:
社会网络个性化推荐相似性社会计算
Keywords:
social networkpersonal recommendationsimilaritysocial computing
文献标志码:
A
摘要:
以网络为基础的网络社会包含海量新闻信息,基于内容语义的新闻推荐成为迫切需求。针对上述目的以及社会网络中新闻推荐方法的独特性,改进了基于社会网络的新闻推荐模型。利用历史新闻中人们的新闻相似性、浏览时间、浏览次数、外推行为以及评价等指标,发掘和构建了社会网络中人与人之间的朋友关系,并把它与个人历史浏览记录相结合,计算当前新闻的综合推荐度,从而进行推荐。实验表明,该方法改进了社会网络中的新闻推荐,能更好地向用户推荐新闻
Abstract:
Web-based network society contains huge amounts of news and information,the news recommendation based on the semantic content has become urgent needs. For the above purposes,and the uniqueness of news recommendation methods in social networks,im-prove the news recommendation model based on social network. Discover and construct the relations between people in social network,u-sing the user's news similarity,scanning time,scanning number etc in history record,and put it with your browsing history records,calcu-lating the comprehensive recommendation of current news to make recommendations. Experiments show the method improves the news recommendation in social network,better recommending the news for users

相似文献/References:

[1]查文琴 梁昌勇 曹镭.基于用户聚类的协同过滤推荐方法[J].计算机技术与发展,2009,(06):69.
 ZHA Wen-qin,LIANG Chang-yong,CAO Lei.Collaborative Filtering Recommendation Method Based on Clustering of Users[J].,2009,(10):69.
[2]曹毅 贺卫红.基于内容过滤的电子商务推荐系统研究[J].计算机技术与发展,2009,(06):182.
 CAO Yi,HE Wei-hong.Research on E- Commerce Recommender System Based on Content - Based Filtering[J].,2009,(10):182.
[3]汤亚玲 秦峰.Web行为下的正向关联规则挖掘研究[J].计算机技术与发展,2007,(08):40.
 TANG Ya-ling,QIN Feng.Research of Forward Association Rules Mining Under Web Behaviour[J].,2007,(10):40.
[4]卫琳.基于搜索结果的个性化推荐系统研究[J].计算机技术与发展,2007,(09):65.
 WEI Lin.A Study of Personalization Recommendation System Based on Search Result[J].,2007,(10):65.
[5]但微 才书训.电子商务中Web挖掘技术的应用探讨[J].计算机技术与发展,2006,(01):207.
 DAN Wei,CAI Shu-xun.Using Web Mining in Electronic Commerce[J].,2006,(10):207.
[6]王嫣然 陈梅 王翰虎 张鑫.一种基于内容过滤的科技文献推荐算法[J].计算机技术与发展,2011,(02):66.
 WANG Yan-ran,CHEN Mei,WANG Han-hu,et al.A Content-Based Filtering Algorithm for Scientific Literature Recommendation[J].,2011,(10):66.
[7]陈加忠 鞠增伟 陈常念 李榕 夏涛 王冼.基于社会网络特性的机会计算服务平台[J].计算机技术与发展,2011,(06):197.
 CHEN Jia-zhong,JU Zeng-wei,CHEN Chang-nian,et al.Opportunistic Computing Service Platform Based on Social Network Properties[J].,2011,(10):197.
[8]杨晶,成卫青,郭常忠.基于标准标签的用户兴趣模型研究[J].计算机技术与发展,2013,(10):208.
 YANG Jing[],CHENG Wei-qing[],GUO Chang-zhong[].Research on User Interest Model Based on Standard Tag[J].,2013,(10):208.
[9]王庚,宋传超,盛玉晓,等.基于标签传播的社区挖掘算法研究综述[J].计算机技术与发展,2013,(12):69.
 WANG Geng,SONG Chuan-chao,SHENG Yu-xiao,et al.Research Summary on Communities Mining Algorithm Based on Label Propagation[J].,2013,(10):69.
[10]黄谭,苏一丹.基于混合用户模型的二分图推荐算法[J].计算机技术与发展,2014,24(06):145.
 HUANG Tan,SU Yi-dan.Bipartite Graph Recommendation Algorithm Based on Hybrid User Model[J].,2014,24(10):145.

更新日期/Last Update: 1900-01-01