[1]胡爱策,任明仑,王浩.粒子群与细菌觅食相结合的案例聚类算法[J].计算机技术与发展,2013,(10):44-47.
 HU Ai-ce[],REN Ming-lun[],WANG Hao[].Case Clustering Algorithm Combining Particle Swarm Optimization and Bacterial Foraging[J].,2013,(10):44-47.
点击复制

粒子群与细菌觅食相结合的案例聚类算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年10期
页码:
44-47
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Case Clustering Algorithm Combining Particle Swarm Optimization and Bacterial Foraging
文章编号:
1673-629X(2013)10-0044-04
作者:
胡爱策1任明仑12王浩1
[1]合肥工业大学 管理学院;[2]过程优化与智能决策教育部重点实验室
Author(s):
HU Ai-ce[1]REN Ming-lun[12]WANG Hao[1]
关键词:
案例库粒子群算法细菌觅食算法k-prototypes算法
Keywords:
case baseparticle swarm optimizationbacterial foraging algorithmk-prototypes algorithm
文献标志码:
A
摘要:
案例聚类是按照案例库中案例的相似度进行归类,目的是减少案例推理系统搜索相似案例的时间、提高案例推理系统的性能和降低案例库维护的复杂度。该问题的难度在于案例库的案例规模比较大和不同的聚类算法的选择对于聚类结果的影响。文中在粒子群算法与细菌觅食算法基础上,将两者结合起来,综合两个算法的优点,并将其应用在k-pro-totypes方法上对案例库中案例进行聚类。与流行的聚类算法进行比较,实验结果显示文中的算法具有更高的效率并且性能相对而言更加优秀
Abstract:
Case clustering is classified by the similarity to cases in case-base,the object is to reduce the time for searching similar case, improve the performance of case-base system and reduce the complexity of maintaining the case-base. The difficulty problem lies in that the size of case base is very large,and the clustering results is influenced by the choice of the clustering algorithm. In this paper,combined the advantages of particle swarm algorithm and bacterial foraging algorithm,use in case clustering with k-prototypes. Compared with pop-ular clustering algorithm show that this algorithm is efficient,has better performance

相似文献/References:

[1]张爱华 江中勤 张华.基于粒子群优化算法的分形图像压缩编码[J].计算机技术与发展,2010,(02):21.
 ZHANG Ai-hua,JIANG Zhong-qin,ZHANG Hua.Fractal Image Compression Coding Based on PSO[J].,2010,(10):21.
[2]唐俊.PSO算法原理及应用[J].计算机技术与发展,2010,(02):213.
 TANG Jun.Principle and Application of PSO Algorithm[J].,2010,(10):213.
[3]张捍东 廖天红 岑豫皖.用模拟退火思想的粒子群算法实现图像分割[J].计算机技术与发展,2010,(05):83.
 ZHANG Han-dong,LIAO Tian-hong,CEN Yu-wan.Image Segmentation Through Particle Swarm Optimization Based on Simulated Annealing[J].,2010,(10):83.
[4]廖锋 高兴宝.差分演化算法在约束优化问题中的应用[J].计算机技术与发展,2010,(05):187.
 LIAO Feng,GAO Xing-bao.Application of Differential Evolution Algorithms on Constraint Optimization Problems[J].,2010,(10):187.
[5]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(10):105.
[6]邹毅 朱晓萍 王秀平.一种基于混沌优化的混合粒子群算法[J].计算机技术与发展,2009,(11):18.
 ZOU Yi,ZHU Xiao-ping,WANG Xiu-ping.A Hybrid PSO Algorithm Based on Chaos Optimization[J].,2009,(10):18.
[7]王为为 程家兴 贺晟.基于佳点集交叉的粒子群算法[J].计算机技术与发展,2009,(12):32.
 WANG Wei-wei,CHENG Jia-xing,HE Sheng.Particle Swarm Algorithm Based on Good Point Set Crossover[J].,2009,(10):32.
[8]贾瑞玉 黄义堂 邢猛.一种动态改变权值的简化粒子群算法[J].计算机技术与发展,2009,(02):137.
 JIA Rui-yu,HUANG Yi-tang,XING Meng.A Modified Simple Particle Swarm Optimization Using Dynamically Decreasing Inertia Weight[J].,2009,(10):137.
[9]卢珊萍 于盛林.基于粒子群算法的细胞神经网络模板参数设计[J].计算机技术与发展,2009,(04):83.
 LU Shan-ping,YU Sheng-lin.A Template Design Method for Cellular Neural Network Based on Particle Swarm Optimizer Algorithm[J].,2009,(10):83.
[10]王艳玲 李龙澍 胡哲.群体智能优化算法[J].计算机技术与发展,2008,(08):114.
 WANG Yan-ling,LI Long-shu,HU Zhe.Swarm Intelligence Optimization Algorithm[J].,2008,(10):114.

更新日期/Last Update: 1900-01-01