[1]孙成富,赵建洋,陈剑洪.差分进化算法马尔可夫链模型及收敛性分析[J].计算机技术与发展,2013,(08):62-65.
 SUN Cheng-fu,ZHAO Jian-yang,CHEN Jian-hong.Analysis of Differential Evolution's Markov Chain Model and Convergence[J].,2013,(08):62-65.
点击复制

差分进化算法马尔可夫链模型及收敛性分析()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年08期
页码:
62-65
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Analysis of Differential Evolution's Markov Chain Model and Convergence
文章编号:
1673-629X(2013)08-0062-04
作者:
孙成富赵建洋陈剑洪
淮阴工学院 计算机工程学院
Author(s):
SUN Cheng-fuZHAO Jian-yangCHEN Jian-hong
关键词:
差分进化马尔可夫链收敛性分析全局收敛局部收敛
Keywords:
differential evolutionMarkov chainconvergence analysisglobal convergencelocal convergence
文献标志码:
A
摘要:
差分进化算法是一种基于种群差异的优化算法,主要应用于解决连续空间的优化问题。目前,研究人员主要在算法的改进和应用方面研究差分进化算法,很少从理论角度对其进行研究。为了分析差分进化算法的收敛性,定义优化个体、种群的状态转移,并提出种群的最优状态集合。根据差分进化算法的操作算子计算出个体的状态迁移概率,并证明种群状态序列是有限齐次马尔可夫链,进而建立差分进化算法的马尔可夫链模型;最后,证明差分进化算法无法保证全局收敛。理论研究结果表明,适当保证种群的多样性能够提高差分进化算法的性能
Abstract:
As a modern optimization algorithm,differential evolution algorithm which is based on the individual differential reconstruction idea is designed for the global continuous optimization problem. Up to now,the improvement and application of the algorithm are mainly focused by researchers but theoretical analysis of the algorithm is seldom taken into account. In order to analyze the convergence of the al-gorithm,the concepts of state transition for individual and population are defined and the optimal state set of population is proposed. The individual state transition probability is computed according to the operators of differential evolution algorithm. The state sequence of pop-ulation has been proved to be Finite Nonhomogeneous Markov chain and the Markov chain model of differential evolution is proposed. At last,the theory analysis of the differential evolution demonstrates that it is not able to guarantee the global convergence. The result of the theory research shows that keeping the population diversity will improve the performance of the algorithm

相似文献/References:

[1]张政保 马懿 刘一川 杨小伟.基于邻域相关性MC模型的空域隐写检测算法[J].计算机技术与发展,2010,(03):76.
 ZHANG Zheng-bao,MA Yi,LIU Yi-chuan,et al.A Detection Algorithm for Spatial- Domain Stego Based on MC Model of Neighborhood Correlation[J].,2010,(08):76.
[2]朱颢东 钟勇.一种改进的模拟退火算法[J].计算机技术与发展,2009,(06):32.
 ZHU Hao-dong,ZHONG Yong.A Kind of Renewed Simulated Annealing Algorithm[J].,2009,(08):32.
[3]丁静 韩强.随机Petri网性能计算软件关键技术的研究[J].计算机技术与发展,2009,(11):57.
 DING Jing,HAN Qiang.Study of Visualized Performance Computation Software Models for Stochastic Petri Net[J].,2009,(08):57.
[4]余智学 林文龙.基于Markov与PageRank算法的Web日志仿真器[J].计算机技术与发展,2008,(05):182.
 YU Zhi-xue,LIN Wen-long.Web Access Session Simulator Based on Markov Chain and PageRank Algorithm[J].,2008,(08):182.
[5]包融 王伟业 顾汉杰 徐永安.订单可分的协作计划模型及其进化算法[J].计算机技术与发展,2010,(10):58.
 BAO Rong,WANG Wei-ye,GU Han-jie,et al.Collaborative Planning Model Based on Divisible Order and Its Evolution Algorithm[J].,2010,(08):58.
[6]刘赛 李绪蓉 万麟瑞.基于排队论的云计算资源池模型研究[J].计算机技术与发展,2012,(12):87.
 LIU Sai,LI Xu-rong,WAN Lin-rui.Computing Clouds Resources Pool Model Research Based on Queue Theory[J].,2012,(08):87.
[7]姚宏伟,井庆丰.OFDM在LMS信道下的BER性能研究[J].计算机技术与发展,2014,24(06):218.
 YAO Hong-wei,JING Qing-feng.Research on BER Performance of OFDM under LMS Channel[J].,2014,24(08):218.
[8]于明鹭[],刘南杰[][],赵海涛[][]. 车载网中紧急消息的广播性能分析[J].计算机技术与发展,2015,25(12):169.
 YU Ming-lu[],LIU Nan-jie[][],ZHAO Hai-tao[][]. Performance Analysis of Emergency Message Broadcast in Vehicular Ad Hoc Networks[J].,2015,25(08):169.
[9]茅利锋,张伟. 基于隐含狄利克雷模型的文献主题演化预测[J].计算机技术与发展,2016,26(09):34.
 MAO Li-feng,ZHANG Wei. Topic Evolution and Prediction of Scientific Papers Based on Latent Dirichlet Allocation Model[J].,2016,26(08):34.
[10]佘雅莉,周 良.基于改进在线序列学习机的危险源识别算法[J].计算机技术与发展,2018,28(09):72.[doi:10.3969/ j. issn.1673-629X.2018.09.016]
 SHE Ya-li,ZHOU Liang.Hazard Identification Algorithm Based on Improved Online Sequential Extreme Learning Machine[J].,2018,28(08):72.[doi:10.3969/ j. issn.1673-629X.2018.09.016]

更新日期/Last Update: 1900-01-01