[1]刘静.基于最小二乘支持向量机车牌字符特征识别[J].计算机技术与发展,2013,(05):195-198.
 LIU Jing.LSSVM-based License Plate Character Feature Recognition[J].,2013,(05):195-198.
点击复制

基于最小二乘支持向量机车牌字符特征识别()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年05期
页码:
195-198
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
LSSVM-based License Plate Character Feature Recognition
文章编号:
1673-629X(2013)05-0195-04
作者:
刘静
渭南师范学院 统计科学与社会计算研究所
Author(s):
LIU Jing
关键词:
车牌识别最小二乘支持向量机奇异值分解
Keywords:
license plate recognitionleast square support vector machine (LSSVM)singular value decomposition (SVD)
文献标志码:
A
摘要:
车牌识别通常按照车牌图像预处理、定位与字符分割、特征提取、特征分类的步骤展开分析与研究,特征提取与分类识别是提高车牌识别率和识别速度的关键环节.最小二乘支持向量机是一种新的有效的机器学习算法,文中提出利用最小二乘支持向量机识别车牌字符奇异值特征的方法.该方法是在车牌图像预处理的基础上,提取分割后车牌字符的奇异值特征,压缩保留主要特征,利用最小二乘支持向量机分类器分类识别.在自建车牌图像库上进行实验,结果证实,文中提出的方法是有效可行的
Abstract:
LP recognition is analyzed and researched in LP image preprocessing,location and character segmentation,feature extraction and feature classification. Among them,feature extraction and classification is the key link to reach more better recognition rate and speed. Least square support vector machine (LSSVM) is a kind of novel machine learning method. Propose a new method of license plate (LP) character recognition based on LSSVM and singular value decomposition (SVD). This method is based on preprocessing,extracts the singular value features of the LP character after segmentation,the main feature is compressed and contained,uses LSSVM to classify and identify. Experiment is based on LP image. The experimental results demonstrate the efficiency of the proposed approach

相似文献/References:

[1]邹星.一种基于模板库的车牌字符识别算法[J].计算机技术与发展,2010,(04):128.
 ZOU Xing.A License Plate Character Recognition Arithmetic Based on Template Library[J].,2010,(05):128.
[2]马波 王正群 侯艳平 邹军.基于边界近邻的最小二乘支持向量机实现[J].计算机技术与发展,2008,(05):108.
 MA Bo,WANG Zheng-qun,HOU Yan-ping,et al.Least Squares Support Vector Machine Based on Boundary Nearest[J].,2008,(05):108.
[3]杨述斌 张阳.复杂车辆图像中的车牌快速形态定位算法[J].计算机技术与发展,2008,(06):50.
 YANG Shu-bin,ZHANG Yang.Fast Morphological Locating Algorithm of Vehicle License Plate in Complex Vehicle Images[J].,2008,(05):50.
[4]黄谦 肖侬 刘波.基于支持向量机的网格负载信息预测模型[J].计算机技术与发展,2007,(06):32.
 HUANG Qian,XIAO Nong,LIU Bo.Grid Load Forecasting Based on Least Squares Support Vector Machine[J].,2007,(05):32.
[5]宓浩 张燕平.基于特征投影和交叉覆盖神经网络的车牌识别[J].计算机技术与发展,2007,(10):76.
 MI Hao,ZHANG Yan-ping.License Plate Location Based on Projection Character and Alternate Covering Neural Network[J].,2007,(05):76.
[6]李波 曾致远 周建中 罗勤.车牌识别系统研究与实现[J].计算机技术与发展,2006,(06):10.
 LI Bo,ZENG Zhi-yuan,ZHOU Jian-zhong,et al.Study and Realization for License Plate Recognition System[J].,2006,(05):10.
[7]孟晓莉 赵安军 马光思.基于数学形态学的车牌定位研究与实现[J].计算机技术与发展,2010,(11):84.
 MENG Xiao-li,ZHAO An-jun,MA Guang-si.Car License Plate Location Research and Implementation Based on Mathematical Morphology[J].,2010,(05):84.
[8]肖强.基于多尺度稀疏LSSVM的时间序列预测[J].计算机技术与发展,2011,(03):117.
 XIAO Qiang.Multi-Scale Least Squares Support Vector Machine for Time Series Forecasting[J].,2011,(05):117.
[9]孔超 高珏 陈开云[] 许华虎[].基于多特征的车辆一致性检测的研究与应用[J].计算机技术与发展,2012,(03):31.
 KONG Chao,GAO Jue,CHEN Kai-yun,et al.Target Multi-Feature Based Consistency Checking of Vehicles[J].,2012,(05):31.
[10]霍玲玲,徐文军,赵云青,等.嵌入式车牌识别系统的设计与实现[J].计算机技术与发展,2013,(04):206.
 HUO Ling-ling,XU Wen-jun,ZHAO Yun-qing,et al.Design and Implementation of an Embedded System of Vehicle License Plate Recognition[J].,2013,(05):206.

更新日期/Last Update: 1900-01-01