[1]张晓咏,熊承义,胡开云,等.基于灰度纹理信息的图像压缩感知编码与重构[J].计算机技术与发展,2013,(01):47-50.
点击复制

基于灰度纹理信息的图像压缩感知编码与重构()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年01期
页码:
47-50
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Coding and Reconstruction of Image Compressed Sensing Based on Gray-scale Texture Information
文章编号:
1673-629X(2013)01-0047-04
作者:
张晓咏12熊承义1胡开云1时翔1
[1]中南民族大学 电子信息工程学院;[2]中国科学院 深圳先进技术研究院
关键词:
压缩感知DCT稀疏投影交流分量灰度纹理信息
Keywords:
compressive sensingDCT sparse decompositionAC coefficientsgray-scale texture information
文献标志码:
A
摘要:
引入了压缩感知(Compressed Sensing,CS)理论,在分析图像 DCT 系数分布特性的基础上,提出了一种基于灰度纹理信息的压缩采样方法.该方法通过提取图像分块离散余弦变换交流系数的能量,进而对用于对测量过程进行加权修正,充分利用代表图像细节纹理信息的交流分量系数,基于图像轮廓纹理细节信息来分配测量维数,最终实现对不同图像块有区别的压缩采样.比较同类研究结果表明,提出的采样方法在有效减少测量维数或提高重构图像的峰值信噪比和主观视觉效果,以及在降低计算复杂度方面均有更好的表现
Abstract:
It introduced the CS ( Compressed Sensing) theory and proposed a novel gray-scale-texture compressive sampling method based on DCT coefficients distribution characteristics for image signals. This method extracts the energy of DCT alternating current coeffi-cient in image block to use for weighted correction in measurement process,makes full use of alternating current component coefficient of representing image detail texture information to allocate the measuring dimension based on image contour texture detail information,and ultimately realizes the distinguishing compression sampling for different image blocks. Comparison results with the similar work demon-strate that the proposed compressive sampling method could not only efficiently reduce the computational complexity,but also considera-bly decrease measurement rate and/ or enhance the recovery image quality in both PSNR and subjective visual quality

相似文献/References:

[1]周先国 李开宇.基于提升小波结合DCT变换的图像去噪研究[J].计算机技术与发展,2009,(02):62.
 ZHOU Xian-guo,LI Kai-yu.Image De - noising Research Based on Lifting Wavelet and Discrete Cosine Transform[J].,2009,(01):62.
[2]姚磊 王冰.一种基于DCT中频的数字水印算法[J].计算机技术与发展,2008,(01):192.
 YAO Lei,WANG Bing.A Digital Watermarking Algorithm Based on DCT Middle Frequency[J].,2008,(01):192.
[3]由守杰 柏森 曾辉[].鲁棒的混合域音频信息隐藏算法[J].计算机技术与发展,2008,(03):169.
 YOU Shou-jie,BAI Sen,ZENG Hui.Robust Audio Information Hiding Algorithm Based on DWT and DCT[J].,2008,(01):169.
[4]刘振宇 崔逊田 李晓辉.基于DCT压缩域的图像边缘检测算法[J].计算机技术与发展,2008,(04):111.
 LIU Zhen-yu,CUI Xun-tian,LI Xiao-hui.Algorithm for Image Edge Detection Based on DCT Compressed Domain[J].,2008,(01):111.
[5]薛猛 刘兵.图像编码标准化的发展与现状[J].计算机技术与发展,2007,(06):90.
 XUE Meng,LIU Bing.Development and Current Research of Image Coding Standardization[J].,2007,(01):90.
[6]罗钧 焦荣梅.一种块效应图像的处理方法[J].计算机技术与发展,2007,(10):37.
 LUO Jun,JIAO Rong-mei.A Method for Improving Blocking Effect Image[J].,2007,(01):37.
[7]张爱华 薄禄裕 盛飞 杨培.基于小波变换的压缩感知在图像加密中的应用[J].计算机技术与发展,2011,(12):145.
 ZHANG Ai-hua,BO Lu-yu,SHENG Fei,et al.Compressed Sensing Based on Single Layer Wavelet Transform for Image Encryption[J].,2011,(01):145.
[8]王韦刚 庄伟胤.基于NIOS Ⅱ的图像压缩感知[J].计算机技术与发展,2012,(04):12.
 WANG Wei-gang,ZHUANG Wei-yin.Compressed Sensing of Image Based on NIOS Ⅱ[J].,2012,(01):12.
[9]王韦刚 胡海峰.基于压缩感知的协作频谱检测[J].计算机技术与发展,2012,(12):241.
 WANG Wei-gang,HU Hai-feng.Collaborative Spectrum Detection Based on Compressed Sensing[J].,2012,(01):241.
[10]刘洋,季薇,侯晓赟.一种改进的基于 OMP 重建的宽带频谱感知算法[J].计算机技术与发展,2013,(01):99.
 LIU Yang,JI Wei,HOU Xiao-yun.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on OMP[J].,2013,(01):99.

更新日期/Last Update: 1900-01-01