[1]曹玉东.基于融合特征的近似图像检测方法[J].计算机技术与发展,2012,(08):103-106.
 CAO Yu-dong.Similar Image Detection Method with Fusional Feature[J].,2012,(08):103-106.
点击复制

基于融合特征的近似图像检测方法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年08期
页码:
103-106
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Similar Image Detection Method with Fusional Feature
文章编号:
1673-629X(2012)08-0103-04
作者:
曹玉东
辽宁工业大学电子与信息工程学院
Author(s):
CAO Yu-dong
College of Electronics and Information Engineering, Liaoning University of Technology
关键词:
融合特征SIFFblSER副本图像检测
Keywords:
fusional feature SIFT MSER duplicate image detection
分类号:
TP311.13
文献标志码:
A
摘要:
特征提取是图像检测或图像检索的关键步骤,SIFT特征能够实现平移、旋转、缩放等不变性,MSER特征实现了仿射不变性。集成SIFT和MSER特征的优势,提出了一种图像的融合特征提取方法,融合特征相比单一的局部特征具有更好的鲁棒性,还实现了图像特征的加速匹配,同时融合特征减少了存贮空间。针对这种图像的融合特征表示方法,给出了相应的图像匹配策略,实验结果表明提出的融合特征及检测方法在INRIAcopydataset数据集上取得了很好的效果
Abstract:
Extracting feature is the key of duplicate image detection. SIFT shows the invariant of shift, rotation and scale and MSER shows the invariant to affine wansformation. Image fusional feature representation is presented with SIFT and MSER in this paper, which integrates SlFr and MSER. The funsional feature is robuster than a single local feature. At the same time, the speed of match is accelerated by using the fusional feature. The fusional feature needs lower storage space than single SIFT feature. The image match strategy is designed corresponding to fusional feature representation. The experimental results show the effective performance of the proposed method on INRIA copy image dataset

备注/Memo

备注/Memo:
辽宁省教育重点实验室项目(LS2010079)曹玉东(1971-),男,副教授(内聘),博士,研究方向为模式识别与图像处理
更新日期/Last Update: 1900-01-01