[1]邵洪涛 秦亮曦 何莹.带变异算子的非线性惯性权重PSO算法[J].计算机技术与发展,2012,(08):30-33.
 SHAO Hong-tao,QIN Liang-xi,HE Ying.A Nonlinear Inertia Weight Particle Swarm Optimization Algorithm with Mutation Operator[J].,2012,(08):30-33.
点击复制

带变异算子的非线性惯性权重PSO算法()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年08期
页码:
30-33
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
A Nonlinear Inertia Weight Particle Swarm Optimization Algorithm with Mutation Operator
文章编号:
1673-629X(2012)08-0030-04
作者:
邵洪涛 秦亮曦 何莹
广西大学计算机与电子信息学院
Author(s):
SHAO Hong-tao QIN Liang-xi HE Ying
School of Computer, Electronics and Information, Guangxi University
关键词:
粒子群算法非线性惯性权重变异算子
Keywords:
particle swarm optimization nonlinear inertia weight mutation operator
分类号:
TP301.6
文献标志码:
A
摘要:
为了克服粒子群优化算法容易陷入局部最优、早熟收敛的缺点,提出了一种带有变异算子的非线性惯性权重粒子群优化算法。该算法以粒子群算法为基础,首先采用非线性递减策略对惯性权重进行调整,平衡粒子群优化算法的全局和局部搜索能力。当出现早熟收敛时,再引入变异算子,对群体粒子的最优解做随机扰动提高算法跳出局部极值的能力。用三种经典测试函数进行测试,试验结果表明,改进算法与粒子群算法相比,能够摆脱局部最优,得到全局最优解,同时具有较高的收敛精度和较快的收敛速度
Abstract:
In order to overcome the shortcomings that standard particle swarm algorithm is easy to fall into local optima and premature convergence, a nonlinear inertia weight particle swarm optimization improved algorithm with mutation operator is proposed. On the basis of the PSO algorithm,firstly the new algorithm introduces nonlinear decreasing strategy to adjust the weight of inertia,balances the particle swarm optimization global and local capabilities. When the optimization is in premature convergence, introduce mutation operator to do random perturbations for the optimal solution of the particle group to improve the ability of the algorithm to jump out of local extreme. Three benchmark functions are tested and the experimental results show that the improved algorithm is able to get rid of local extreme,get the global optimal solution, but also has higher convergence precision and convergence speed than the particle swarm algorithm

相似文献/References:

[1]张爱华 江中勤 张华.基于粒子群优化算法的分形图像压缩编码[J].计算机技术与发展,2010,(02):21.
 ZHANG Ai-hua,JIANG Zhong-qin,ZHANG Hua.Fractal Image Compression Coding Based on PSO[J].,2010,(08):21.
[2]唐俊.PSO算法原理及应用[J].计算机技术与发展,2010,(02):213.
 TANG Jun.Principle and Application of PSO Algorithm[J].,2010,(08):213.
[3]张捍东 廖天红 岑豫皖.用模拟退火思想的粒子群算法实现图像分割[J].计算机技术与发展,2010,(05):83.
 ZHANG Han-dong,LIAO Tian-hong,CEN Yu-wan.Image Segmentation Through Particle Swarm Optimization Based on Simulated Annealing[J].,2010,(08):83.
[4]廖锋 高兴宝.差分演化算法在约束优化问题中的应用[J].计算机技术与发展,2010,(05):187.
 LIAO Feng,GAO Xing-bao.Application of Differential Evolution Algorithms on Constraint Optimization Problems[J].,2010,(08):187.
[5]来磊 卢文科 邓开连.基于二维Tsallis交叉熵直线型图像阈值分割方法[J].计算机技术与发展,2010,(06):105.
 LAI Lei,LU Wen-ke,DENG Kai-lian.New Image Thresholding Segmentation Methods Based on Two-Dimensional Tsallis Cross-Entropy Liner-Type[J].,2010,(08):105.
[6]邹毅 朱晓萍 王秀平.一种基于混沌优化的混合粒子群算法[J].计算机技术与发展,2009,(11):18.
 ZOU Yi,ZHU Xiao-ping,WANG Xiu-ping.A Hybrid PSO Algorithm Based on Chaos Optimization[J].,2009,(08):18.
[7]王为为 程家兴 贺晟.基于佳点集交叉的粒子群算法[J].计算机技术与发展,2009,(12):32.
 WANG Wei-wei,CHENG Jia-xing,HE Sheng.Particle Swarm Algorithm Based on Good Point Set Crossover[J].,2009,(08):32.
[8]贾瑞玉 黄义堂 邢猛.一种动态改变权值的简化粒子群算法[J].计算机技术与发展,2009,(02):137.
 JIA Rui-yu,HUANG Yi-tang,XING Meng.A Modified Simple Particle Swarm Optimization Using Dynamically Decreasing Inertia Weight[J].,2009,(08):137.
[9]卢珊萍 于盛林.基于粒子群算法的细胞神经网络模板参数设计[J].计算机技术与发展,2009,(04):83.
 LU Shan-ping,YU Sheng-lin.A Template Design Method for Cellular Neural Network Based on Particle Swarm Optimizer Algorithm[J].,2009,(08):83.
[10]王艳玲 李龙澍 胡哲.群体智能优化算法[J].计算机技术与发展,2008,(08):114.
 WANG Yan-ling,LI Long-shu,HU Zhe.Swarm Intelligence Optimization Algorithm[J].,2008,(08):114.

备注/Memo

备注/Memo:
“十一五”国家科技支撑计划课题(2009BAH53803);广西大学硕士研究生科研创新项目(T32602)邵洪涛(1987-),男,河南濮阳人,硕士研究生,研究方向为智能系统与智能CAD技术;秦亮曦,教授,研究方向为数据挖掘、进化计算
更新日期/Last Update: 1900-01-01