[1]华晔 张涛 奚后玮 王玉斐 黄秀丽.基于决策树的高光谱遥感影像分类方法研究[J].计算机技术与发展,2012,(06):198-202.
 HUA Ye,ZHANG Tao,XI Hou-wei,et al.Research on Method of Hyperspectral Remote Sensing Image Classification Based on Decision Tree[J].,2012,(06):198-202.
点击复制

基于决策树的高光谱遥感影像分类方法研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年06期
页码:
198-202
栏目:
应用开发研究
出版日期:
1900-01-01

文章信息/Info

Title:
Research on Method of Hyperspectral Remote Sensing Image Classification Based on Decision Tree
文章编号:
1673-629X(2012)06-0198-05
作者:
华晔 张涛 奚后玮 王玉斐 黄秀丽
中国电力科学研究院
Author(s):
HUA Ye ZHANG Tao XI Hou-wei WANG Yu-fei HUANG Xiu-li
China Electric Power Research Institute
关键词:
二叉决策树高光谱遥感影像分类最佳阈值自动构建
Keywords:
binary decision treehyperspectral remote sensing imageclassificationbest thresholdautomatic building
分类号:
TP39
文献标志码:
A
摘要:
为了验证将决策树算法用于高光谱遥感影像分类的可行性,提出了一种二叉决策树自动构建算法用于高光谱遥感影像分类。通过对高光谱遥感影像进行现场采样、对样本进行统计和训练,生成了一棵二叉决策树,从决策树中提取出分类规则,并对高光谱遥感影像进行分类。生成的决策树简单明了,分类规则易于理解,分类效率和精度都比较高,实现了高光谱遥感影像从数据降维、样本选择、样本训练、决策树生成、影像分类的"一体化"和"自动化
Abstract:
In order to validate the feasibility of using decision tree algorithm for hyperspectral remote sensing image classification,it proposes a method of building decision tree automatically for hyperspectral remote sensing image classification. Based on hyperspectral remote sensing image on-site sampling, sample statistics and training, generate a binary decision tree, extract classification rule from the decision tree and classify the hyperspectral remote sensing image. The whole tree is simple and the classification rules are easy to understand. Both classification efficiency and accuracy are satisfactory. The study makes it "integration" and "automation" to reduce the dimensionality of hyperspectral data, sample selection, sample traimng,decision tree generation and image classification

备注/Memo

备注/Memo:
国家电网科技项目(SG11075-1)华哗(1985-),男,江苏南京人,硕士,助理工程师,主要研究方向为信息安全
更新日期/Last Update: 1900-01-01