[1]王韦刚 庄伟胤.基于NIOS Ⅱ的图像压缩感知[J].计算机技术与发展,2012,(04):12-15.
 WANG Wei-gang,ZHUANG Wei-yin.Compressed Sensing of Image Based on NIOS Ⅱ[J].,2012,(04):12-15.
点击复制

基于NIOS Ⅱ的图像压缩感知()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年04期
页码:
12-15
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Compressed Sensing of Image Based on NIOS Ⅱ
文章编号:
1673-629X(2012)04-0012-04
作者:
王韦刚 庄伟胤
南京邮电大学电子科学与工程学院
Author(s):
WANG Wei-gangZHUANG Wei-yin
College of Electronic Science & Engineering,Nanjing University of Posts and Telecommunications
关键词:
压缩感知稀疏表示观测矩阵正交匹配追踪算法
Keywords:
compressed sensing sparse representation measurement matrix OMP
分类号:
TP31
文献标志码:
A
摘要:
压缩感知(CS)是近年来提出的一种针对稀疏信号处理的新方法,其核心是将压缩与采样同步进行,由于信号的投影测量数据远小于传统方法的数据量,突破了香农采样定理瓶颈从而使得高分辨率信号采集成为可能。NIOSⅡ嵌入式处理器是ALTERA公司推出的第二代片上可编程软核处理器,它的灵活性与可裁减性使其适用于终端数据处理。正交匹配追踪(OMP)算法是压缩感知理论中用于重构的经典算法,针对该算法对图像重构计算时需要大量存储空间并耗时巨大的问题,文中提出了图像分块压缩的改进方案;针对OMP算法重构时图像列与列之间数据相关性被割裂的现象,提出了图像均衡行列值的改进算法。实际系统运行结果显示两种改进方案均取得了良好效果
Abstract:
Compression Sensing(CS) is a new theory in sparse signal processing field which was proposed in recent years.It combines the signal compression and sampling simultaneously.It breaks through the bottlenecks of Shannon sampling theorem and makes the high resolution signal acquisition possible since the signal measurement data is far less than the data of the conventional method.Developed by ALTERA company,NIOS Ⅱ embedded processor is the second generation of the programmable soft core processor with its flexibility suiting for terminal data processing.Orthogonal Matching Pursuit(OMP) is a classical algorithm of reconstruction in CS theory.The problem that image reconstruction needs large storage and time is solved by proposing image dividing compressed scheme.Considering the relativity is disserved between columns when reconstructing the original image,proposed an algorithm by equalizing the data of image in rows and columns.Results in actual system show that these two improvements have achieved good effects

相似文献/References:

[1]朱伟冬 胡剑凌.基于马氏距离的稀疏表示分类算法[J].计算机技术与发展,2011,(11):27.
 ZHU Wei-dong,HU Jian-ling.Sparse Representation Classification Algorithm Based on Mahalanobis Distance[J].,2011,(04):27.
[2]张爱华 薄禄裕 盛飞 杨培.基于小波变换的压缩感知在图像加密中的应用[J].计算机技术与发展,2011,(12):145.
 ZHANG Ai-hua,BO Lu-yu,SHENG Fei,et al.Compressed Sensing Based on Single Layer Wavelet Transform for Image Encryption[J].,2011,(04):145.
[3]王韦刚 胡海峰.基于压缩感知的协作频谱检测[J].计算机技术与发展,2012,(12):241.
 WANG Wei-gang,HU Hai-feng.Collaborative Spectrum Detection Based on Compressed Sensing[J].,2012,(04):241.
[4]张晓咏,熊承义,胡开云,等.基于灰度纹理信息的图像压缩感知编码与重构[J].计算机技术与发展,2013,(01):47.
[5]刘洋,季薇,侯晓赟.一种改进的基于 OMP 重建的宽带频谱感知算法[J].计算机技术与发展,2013,(01):99.
 LIU Yang,JI Wei,HOU Xiao-yun.A Modified Spectrum Sensing Algorithm for Wideband Cognitive Radio Based on OMP[J].,2013,(04):99.
[6]葛广重,杨敏.基于稀疏表示的单幅图像超分辨率重建[J].计算机技术与发展,2013,(09):113.
 GE Guang-zhong,YANG Min.Single Image Super-resolution Reconstruction Based on Sparse Representation[J].,2013,(04):113.
[7]彭钰,侯晓赟.基于二维压缩感知的双选信道估计[J].计算机技术与发展,2013,(10):220.
 PENG Yu,HOU Xiao-yun.Doubly Selective Channel Estimation Based on Two Dimension Compressed Sensing[J].,2013,(04):220.
[8]赵海峰,于雪敏,邹际祥,等.基于L1范数主成分分析的颅脑图像恢复[J].计算机技术与发展,2014,24(01):231.
 ZHAO Hai-feng[],YU Xue-min[],ZOU Ji-xiang[],et al.Cerebral Image Recovery Based on L1-norm Principal Component Analysis[J].,2014,24(04):231.
[9]李熔.基于截尾估计的概率估计方法[J].计算机技术与发展,2014,24(02):101.
 LI Rong.Probability Estimation Method Based on Truncated Estimation[J].,2014,24(04):101.
[10]李燕,王博.基于压缩感知的数据压缩与检测[J].计算机技术与发展,2014,24(03):198.
 LI Yan,WANG Bo.Data Compression and Detection Based on Compressive Sensing[J].,2014,24(04):198.
[11]钱阳,李雷. 一种基于新型KPCA算法的视频压缩感知算法[J].计算机技术与发展,2015,25(10):101.
 QIAN Yang,LI Lei. A Video Compressed Sensing Algorithm Based on Novel KPCA[J].,2015,25(04):101.
[12]钱阳,李雷,袁安安. 基于自适应K-SVD字典的视频帧稀疏重建算法[J].计算机技术与发展,2017,27(06):36.
 QIAN Yang,LI Lei,YUAN An-an. An Adaptive K-SVD Dictionary Learning Algorithm for Video Frame Sparse Reconstruction[J].,2017,27(04):36.

备注/Memo

备注/Memo:
南京邮电大学科研项目基金(NY210038)王韦刚(1975-),男,硕士,讲师,研究方向为计算机应用及通信信号处理
更新日期/Last Update: 1900-01-01