[1]陈开云 高珏 孙柏林[] 许华虎[].基于混合特征提取的人脸情感识别研究[J].计算机技术与发展,2012,(02):96-99.
 CHEN Kai-yun,GAO Jue,SUN Bai-lin,et al.Studies on Facial Expression Recognition Based on Hybrid Features Extraction[J].,2012,(02):96-99.
点击复制

基于混合特征提取的人脸情感识别研究()
分享到:

《计算机技术与发展》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年02期
页码:
96-99
栏目:
智能、算法、系统工程
出版日期:
1900-01-01

文章信息/Info

Title:
Studies on Facial Expression Recognition Based on Hybrid Features Extraction
文章编号:
1673-629X(2012)02-0096-04
作者:
陈开云12 高珏2 孙柏林[13] 许华虎[13]
[1]上海大学计算机工程与科学学院[2]上海大学计算中心[3]上海上大海润信息系统有限公司
Author(s):
CHEN Kai-yunGAO JueSUN Bai-linXU Hua-hu
[1]School of Computer Engineering and Science,Shanghai University[2]Computing Center,Shanghai University[3]Shanghai Shangda Hairun Information System Co.Ltd
关键词:
特征提取表情识别隐马尔科夫模型
Keywords:
feature extraction facial recognition hidden Markov model
分类号:
TP31
文献标志码:
A
摘要:
为了提高特征提取环节对表情识别率的影响,文中采用活动外观模型(AAM)提取整体形变信息,对眉毛及眼睛区域采用Gabor小波变换提取纹理信息,对嘴巴区域采用模板匹配法获取嘴部纹理信息,然后对提取的各个特征采用离散的隐马尔科夫模型得出6种表情概率,在识别阶段根据每个特征对6种表情的贡献权值分别进行特征加权融合,最后选择最大概率的表情作为表情识别结果。通过对10位女性6种表情图像进行训练实验,该方法有着良好的识别率
Abstract:
In order to improve the impact of the feature extraction on the rate of the face recognition,overall deformation features are extracted by AAM,texture features of the eyebrows and eyes areas are extracted by Gabor wavelet transformation,and template matching is used to extract the texture features of the mouth area.And then discrete HMM is adopted to get the expression probability of each feature.In the stage of recognition,the results are fused by the contribution to the six kinds of expressions of each feature with its weight obtained by contribution analysis algorithm,and then choose the maximal probability as the final result.Through the training and experiment on 10 women of their 6 kinds of expression,the method has good recognition rate

相似文献/References:

[1]田昕辉 李成基.带有短语切分的中文文本分类方法[J].计算机技术与发展,2010,(01):5.
 TIAN Xin-hui,LEE Sung-kee.Phrase Segmentation for Chinese Text Classification[J].,2010,(02):5.
[2]何小娜 逄焕利.基于二维直方图和改进蚁群聚类的图像分割[J].计算机技术与发展,2010,(03):128.
 HE Xiao-na,PANG Huan-li.Image Segmentation Based on Improved Ant Colony Clustering and Two- Dimensional Histogram[J].,2010,(02):128.
[3]罗林波 陈绮.氨基酸序列特征提取方法研究[J].计算机技术与发展,2010,(02):206.
 LUO Lin-bo,CHEN Qi.Research of Feature Extraction Methods of Amino Acid Sequence[J].,2010,(02):206.
[4]姜鹤 陈丽亚.SVM文本分类中一种新的特征提取方法[J].计算机技术与发展,2010,(03):17.
 JIANG He,CHEN Li-ya.A New Feature Selection Method in SVM Text Categorization[J].,2010,(02):17.
[5]毛雁明 兰美辉 王运琼 冯乔生.一种改进的基于Harris的角点检测方法[J].计算机技术与发展,2009,(05):130.
 MAO Yan-ming,LAN Mei-hui,WANG Yun-qiong,et al.An Improved Corner Detection Method Based on Harris[J].,2009,(02):130.
[6]赵辉 张鹏.网络异常的主动检测与特征分析[J].计算机技术与发展,2009,(08):159.
 ZHAO Hui,ZHANG Peng.Active Detection and Feature Analysis About Network Anomaly[J].,2009,(02):159.
[7]汤婷 吴小培 项明.指纹图像增强与特征提取[J].计算机技术与发展,2009,(01):81.
 TANG Ting,WU Xiao-pei,XIANG Ming.Fingerprint Image Enhancement and Minutiae Extraction[J].,2009,(02):81.
[8]张国富 凌捷 彭辉 谷保平.基于支持向量机的手写签名研究[J].计算机技术与发展,2008,(05):57.
 ZHANG Guo-fu,LING Jie,PENG Hui,et al.Research of Handwritten Signature Based on SVM[J].,2008,(02):57.
[9]黄国宏 刘刚.一种新的基于Fisher准则的线性特征提取方法[J].计算机技术与发展,2008,(05):227.
 HUANG Guo-hong,LIU Gang.A New Linear Feature Extraction Method Based on Fisher Criterion[J].,2008,(02):227.
[10]黄国宏 刘刚.一种新的基于DCT变换的线性判别分析[J].计算机技术与发展,2008,(06):97.
 HUANG Guo-hong,LIU Gang.A Novel Linear Discriminant Analysis Based on DCT[J].,2008,(02):97.

备注/Memo

备注/Memo:
国家科技部863计划项目(2007AA041604)陈开云(1987-),男,硕士,主研方向为计算机图形学、人机交互;许华虎,博士,教授,主研方向为人机交互、图像处理
更新日期/Last Update: 1900-01-01